DOI:
https://doi.org/10.69717/jaest.v3.i2.49Keywords:
Induction heating systems, Electromagnetism, Thermal phenomenon, Coupled models, Axisymmetrical modelling, Volume control methodAbstract
In order to give a temperature distribution at the bottom of the induction cooking, and moderate reduction the temperature outside the useless areas of these systems. This paper is dedicated to the study of the induction heating systems, which involves coupled electromagnetic and thermal phenomena and where new topologies are proposed. The modelling of the problem is based on the Maxwell's equations and the heat diffusion equation. We present a numerical simulation method based on parameterization of thermal electromagnetic coupling phenomena taking into account the changing of the physical characteristics of the body during the induction heating process. The purpose of this new optimum perforation topology is based on improving the thermal performances of the system, which allows improved dissipation by heat exchange. The results are obtained from a two-dimensional calculation code developed and implemented on Matlab software where CVM the finite volume method was adopted as a method of solving partial differential equations with partial derivatives characteristics of physical phenomena.
Downloads
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Similar Articles
- Mohamed Khemissa, Abdelkrim Mahamedi, Lakhdar Mekki, Problematic soil mechanics in the Algerian arid and semi-arid regions: Case of M’sila expansive clays , Journal of Applied Engineering Science & Technology: Vol. 1 No. 2 (2015): JAEST
- Ouassila Bahloul, Khelifa Abbeche, Azeddine Bahloul, Study of the microstructure of collapsible soil treated with the potassium chloride , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Hicham Mokhbi, Mekki Mellas, Abdelhak Mabrouki, Jean‐Michel Pereira, Numerical study of a vertical pullout capacity of strip anchor plate on a frictional soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Roger Frank, Eurocode 7 on ‘Geotechnical design’: a code for soil-structure interaction , Journal of Applied Engineering Science & Technology: Vol. 1 No. 1 (2014): JAEST
You may also start an advanced similarity search for this article.