DOI:
https://doi.org/10.69717/jaest.v1.i2.34Keywords:
Geogrid, Interface, Reinforcement, Numerical modelling, Segmental retaining wallAbstract
Geogrid-reinforced soil segmental retaining walls have gained wide popularity because of their ease of installation and quick construction. This paper focuses on the numerical analysis using the FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), the influence of the inclined blocs on the behavior of geogrid-reinforced soil segmental retaining walls. The results show that the inclination of the segmental blocks influences the shear stress transmitted to the blocks, the lateral displacement, the tensile loads and the strains in the geogrid layers.
Downloads
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Hicham Mokhbi, Mekki Mellas, Abdelhak Mabrouki, Jean‐Michel Pereira, Numerical study of a vertical pullout capacity of strip anchor plate on a frictional soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Hassiba Belaribi, Mekki Mellas, Using mathematical models and artificial neural networks for predicting the compressive strength of concrete with steel fibers exposed to high temperatures , Journal of Applied Engineering Science & Technology: Vol. 4 No. 1 (2018): JAEST
- Ahmed Bensalem, Mekki Mellas, Valorization of Vase Dam by the addition of the cement kiln Dust (CKD , Journal of Applied Engineering Science & Technology: Vol. 4 No. 2 (2018): JAEST
- Abla Femmam, Abdelhak Mabrouki, Mekki Mellas, Numerical study of the bearing capacity of a strip footing on tow layered clay under inclined loading , Journal of Applied Engineering Science & Technology: Vol. 4 No. 2 (2018): JAEST
- Issam Abdesslam, Mekki Mellas, Pushover analysis of the reinforced concrete frames with soft first storey using a fiber hinge model , Journal of Applied Engineering Science & Technology: Vol. 3 No. 2 (2017): JAEST
- Mohamed Labed, Mekki Mellas, Stability of geosynthetic reinforced embankments over stone column‐improved soft soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 2 (2016): JAEST
- Salah Zerguine, Djamel Benmeddour, Abdallah Zatar, Numerical study of seismic earth pressures acting against a vertical retaining wall in frictional soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Mohamed‐Younes Ouahab, Abdelhak Mabrouki, Mekki Mellas, Djamel Benmeddour, Numerical study of the bearing capacity for strip and circular footings on non‐ homogeneous clay , Journal of Applied Engineering Science & Technology: Vol. 3 No. 1 (2017): JAEST
- Salah Zerguine, Djamel Benmeddour, Abdelhak Mabrouki, Bearing capacity of a strip footing on a geosynthetic reinforced soil modular block walls after a seismic loading , Journal of Applied Engineering Science & Technology: Vol. 4 No. 1 (2018): JAEST
Similar Articles
- Salah Zerguine, Djamel Benmeddour, Abdallah Zatar, Numerical study of seismic earth pressures acting against a vertical retaining wall in frictional soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Salah Zerguine, Djamel Benmeddour, Abdelhak Mabrouki, Bearing capacity of a strip footing on a geosynthetic reinforced soil modular block walls after a seismic loading , Journal of Applied Engineering Science & Technology: Vol. 4 No. 1 (2018): JAEST
- Salah Messast, Numerical modeling of the face reinforcement of Djebel El-Kantour tunnel face (highway east-west) , Journal of Applied Engineering Science & Technology: Vol. 1 No. 1 (2014): JAEST
- Mohamed Labed, Mekki Mellas, Stability of geosynthetic reinforced embankments over stone column‐improved soft soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 2 (2016): JAEST
- Abdelmadjid Meftah, Naïma Benmebarek, Sadok Benmebarek, Numerical study of the active earth pressure distribution on cylindrical shafts using 2D finite difference code , Journal of Applied Engineering Science & Technology: Vol. 4 No. 2 (2018): JAEST
- Hadj Bekki, Behavior of Soil-structure interfaces under cyclic loading for large numbers of cycles: Application to piles , Journal of Applied Engineering Science & Technology: Vol. 1 No. 1 (2014): JAEST
- Mohamed Rezig, Kamel Srairi, Mouloud Feliachi, Lotfi Alloui, New designs systems for induction cooking devices for heating performances improving , Journal of Applied Engineering Science & Technology: Vol. 3 No. 2 (2017): JAEST
- Roger Frank, Eurocode 7 on ‘Geotechnical design’: a code for soil-structure interaction , Journal of Applied Engineering Science & Technology: Vol. 1 No. 1 (2014): JAEST
- Hicham Mokhbi, Mekki Mellas, Abdelhak Mabrouki, Jean‐Michel Pereira, Numerical study of a vertical pullout capacity of strip anchor plate on a frictional soil , Journal of Applied Engineering Science & Technology: Vol. 2 No. 1 (2016): JAEST
- Hamza Djeffal, Mohamed Nadir Amrane, Numerical modeling of the prestressing losses in prestressed concrete beams by modal analysis method , Journal of Applied Engineering Science & Technology: Vol. 4 No. 2 (2018): JAEST
You may also start an advanced similarity search for this article.