JAEST LOGO

Authors

Mounira Hendaoui Departement of Electrical Engineering, Biskra University, BP 145, Biskra, RP 07000, Algeria Author

DOI:

https://doi.org/10.69717/jaest.v5.i1.109

Keywords:

6G, Artificial intelligence, SDN, NFV, Network slicing, Edge and cloud computing, Quantum communications

Abstract

This review article provides an in-depth analysis of integrating artificial intelligence (AI) into key enabling technologies for sixth-generation (6G) wireless networks. It examines how AI can enhance the performance and efficiency of technologies such as software-defined networking (SDN), network functions virtualization (NFV), network slicing, edge and cloud computing, and quantum communications. The study also covers other emerging technologies like reconfigurable intelligent surfaces, terahertz communications, holography, and neuromorphic computing. It identifies technical, security, and interoperability challenges related to this integration while exploring future perspectives and promising research directions. The article aims to provide a comprehensive understanding of the current state of AI integration in 6G technologies, thereby offering valuable guidance for researchers, engineers, and decision-makers in this rapidly evolving field.

Highlights

  1. AI enhances SDN, NFV, and slicing for smarter 6G network control.
  2. AI boosts real-time edge/cloud decisions and resource use.
  3. Quantum and THz tech gain security and speed via AI tools.
  4. AI enables dynamic holography, RIS, and beamforming in 6G.
  5. Integration faces privacy, energy, and standardization challenges.

Downloads

Download data is not yet available.

References

W. Saad, M. Bennis, et M. Chen, « A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems », IEEE Netw., vol. 34, no 3, p. 134‑142, mai 2020, https://doi.org/10.1109/MNET.001.1900287.

K. B. Letaief, W. Chen, Y. Shi, J. Zhang, et Y.J.A. Zhang, « The Roadmap to 6G: AI Empowered Wireless Networks », IEEE Commun. Mag., vol. 57, no 8, p. 84‑90, août 2019, https://doi.org/10.1109/MCOM.2019.1900271.

Y. Wu et al., Éd., 6G Mobile Wireless Networks. in Computer Communications and Networks. Cham: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-72777-2.

S. Dang, O. Amin, B. Shihada, et M.-S. Alouini, « What should 6G be? », Nat. Electron., vol. 3, no 1, p. 20‑29, janv. 2020, https://doi.org/10.1038/s41928-019-0355-6.

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, et M. Zorzi, « Toward 6G Networks: Use Cases and Technologies », IEEE Commun. Mag., vol. 58, no 3, p. 55‑61, mars 2020, https://doi.org/10.1109/MCOM.001.1900411.

Z. Zhang et al., « 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies », IEEE Veh. Technol. Mag., vol. 14, no 3, p. 28‑41, sept. 2019, https://doi.org/10.1109/MVT.2019.2921208.

Y. Siriwardhana, P. Porambage, M. Liyanage, et M. Ylianttila, « AI and 6G Security: Opportunities and Challenges », in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), juin 2021, p. 616‑621. https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482503.

F. Chiti, A. Degl’Innocenti, et L. Pierucci, « Secure Networking with Software-Defined Reconfigurable Intelligent Surfaces », Sensors, vol. 23, no 5, p. 2726, mars 2023, https://doi.org/10.3390/s23052726.

I. F. Akyildiz, A. Kak, et S. Nie, « 6G and Beyond: The Future of Wireless Communications Systems », IEEE Access, vol. 8, p. 133995‑134030, 2020, https://doi.org/10.1109/ACCESS.2020.3010896.

J. Du, C. Jiang, J. Wang, Y. Ren, et M. Debbah, « Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service », IEEE Veh. Technol. Mag., vol. 15, no 4, p. 122‑134, déc. 2020, https://doi.org/10.1109/MVT.2020.3019650.

H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, et K. Wu, « Artificial-Intelligence-Enabled Intelligent 6G Networks », IEEE Netw., vol. 34, no 6, p. 272‑280, nov. 2020, https://doi.org/10.1109/MNET.011.2000195.

Z. Chkirbene, A. Erbad, R. Hamila, A. Mohamed, M. Guizani, et M. Hamdi, « TIDCS: A Dynamic Intrusion Detection and Classification System Based Feature Selection », IEEE Access, vol. 8, p. 95864‑95877, 2020, https://doi.org/10.1109/ACCESS.2020.2994931.

J. Wallnöfer, A. A. Melnikov, W. Dür, et H. J. Briegel, « Machine Learning for Long-Distance Quantum Communication », PRX Quantum, vol. 1, no 1, p. 010301, sept. 2020, https://doi.org/10.1103/PRXQuantum.1.010301.

T. S. Rappaport et al., « Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond », IEEE Access, vol. 7, p. 78729‑78757, 2019, https://doi.org/10.1109/ACCESS.2019.2921522.

L. Shi, B. Li, C. Kim, P. Kellnhofer, et W. Matusik, « Towards real-time photorealistic 3D holography with deep neural networks », Nature, vol. 591, no 7849, p. 234‑239, mars 2021, https://doi.org/10.1038/s41586-020-03152-0.

M. Davies et al., « Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook », Proc. IEEE, vol. 109, no 5, p. 911‑934, mai 2021, https://doi.org/10.1109/JPROC.2021.3067593.

N. McKeown et al., « OpenFlow: enabling innovation in campus networks », SIGCOMM Comput Commun Rev, vol. 38, no 2, p. 69‑74, mars 2008, https://doi.org/10.1145/1355734.1355746.

N. F. Virtualisation, « An introduction, benefits, enablers, challenges & call for action », in White Paper, SDN and OpenFlow World Congress, 2012, p. 73.

D. 3GPP, « System architecture for the 5G system (5GS) », 3rd Gener. Partnersh. Proj. 3GPP Tech. Specif. TS 23501, 2020.

3GPP, Study on management and orchestration of network slicing for next generation network. 3rd Generation Partnership Project (3GPP) Valbonne, France, 2017.

W. Shi, J. Cao, Q. Zhang, Y. Li, et L. Xu, « Edge Computing: Vision and Challenges », IEEE Internet Things J., vol. 3, no 5, p. 637‑646, oct. 2016, https://doi.org/10.1109/JIOT.2016.2579198.

C. H. Bennett et G. Brassard, « Quantum cryptography: Public key distribution and coin tossing », Theor. Comput. Sci., vol. 560, p. 7‑11, déc. 2014, https://doi.org/10.1016/j.tcs.2014.05.025.

M. Di Renzo et al., « Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead », IEEE J. Sel. Areas Commun., vol. 38, no 11, p. 2450‑2525, nov. 2020, https://doi.org/10.1109/JSAC.2020.3007211.

I. F. Akyildiz, J. M. Jornet, et C. Han, « Terahertz band: Next frontier for wireless communications », Phys. Commun., vol. 12, p. 16‑32, sept. 2014, https://doi.org/10.1016/j.phycom.2014.01.006.

D. Gabor, « A New Microscopic Principle », Nature, vol. 161, no 4098, p. 777‑778, mai 1948, https://doi.org/10.1038/161777a0.

V. Jokanović, « The Extraordinary Importance of 6G Network Development and 3D Holography in Future Healthcare », in Deep Learning in Internet of Things for Next Generation Healthcare, Chapman and Hall/CRC, 2024.

M. Xu et al., « Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration », Adv. Mater., vol. 35, no 51, p. 2301063, 2023, https://doi.org/10.1002/adma.202301063.

D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, et S. Uhlig, « Software-Defined Networking: A Comprehensive Survey », Proc. IEEE, vol. 103, no 1, p. 14‑76, janv. 2015, https://doi.org/10.1109/JPROC.2014.2371999.

H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, et V. C. M. Leung, « Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges », IEEE Commun. Mag., vol. 55, no 8, p. 138‑145, août 2017, https://doi.org/10.1109/MCOM.2017.1600940.

J. Xie et al., « A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges », IEEE Commun. Surv. Tutor., vol. 21, no 1, p. 393‑430, 2019, https://doi.org/10.1109/COMST.2018.2866942.

A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, et W. Kellerer, « Software Defined Optical Networks (SDONs): A Comprehensive Survey », IEEE Commun. Surv. Tutor., vol. 18, no 4, p. 2738‑2786, 2016, https://doi.org/10.1109/COMST.2016.2586999.

A. Valadarsky, M. Schapira, D. Shahaf, et A. Tamar, « Learning to Route », in Proceedings of the 16th ACM Workshop on Hot Topics in Networks, Palo Alto CA USA: ACM, nov. 2017, p. 185‑191. https://doi.org/10.1145/3152434.3152441.

N. F. Virtualisation, « Architectural framework », ETsI Gs NFV, vol. 2, p. V1, 2014.

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, et R. Boutaba, « Network Function Virtualization: State-of-the-Art and Research Challenges », IEEE Commun. Surv. Tutor., vol. 18, no 1, p. 236‑262, 2016, https://doi.org/10.1109/COMST.2015.2477041.

H. Hawilo, A. Shami, M. Mirahmadi, et R. Asal, « NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC) », IEEE Netw., vol. 28, no 6, p. 18‑26, nov. 2014, https://doi.org/10.1109/MNET.2014.6963800.

J. Gil Herrera et J. F. Botero, « Resource Allocation in NFV: A Comprehensive Survey », IEEE Trans. Netw. Serv. Manag., vol. 13, no 3, p. 518‑532, sept. 2016, https://doi.org/10.1109/TNSM.2016.2598420.

R. Boutaba et al., « A comprehensive survey on machine learning for networking: evolution, applications and research opportunities », J. Internet Serv. Appl., vol. 9, no 1, p. 16, déc. 2018, https://doi.org/10.1186/s13174-018-0087-2.

X. Foukas, G. Patounas, A. Elmokashfi, et M. K. Marina, « Network Slicing in 5G: Survey and Challenges », IEEE Commun. Mag., vol. 55, no 5, p. 94‑100, mai 2017, https://doi.org/10.1109/MCOM.2017.1600951.

R. Li et al., « Deep Reinforcement Learning for Resource Management in Network Slicing », IEEE Access, vol. 6, p. 74429‑74441, 2018, https://doi.org/10.1109/ACCESS.2018.2881964.

W. Wu et al., « AI-Native Network Slicing for 6G Networks », IEEE Wirel. Commun., vol. 29, no 1, p. 96‑103, févr. 2022, https://doi.org/10.1109/MWC.001.2100338.

D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, et X. Costa-Pérez, « A Machine Learning Approach to 5G Infrastructure Market Optimization », IEEE Trans. Mob. Comput., vol. 19, no 3, p. 498‑512, mars 2020, https://doi.org/10.1109/TMC.2019.2896950.

P. Yang, Y. Xiao, M. Xiao, et S. Li, « 6G Wireless Communications: Vision and Potential Techniques », IEEE Netw., vol. 33, no 4, p. 70‑75, juill. 2019, https://doi.org/10.1109/MNET.2019.1800418.

N. Gisin et R. Thew, « Quantum communication », Nat. Photonics, vol. 1, no 3, p. 165‑171, mars 2007, https://doi.org/10.1038/nphoton.2007.22.

W. K. Wootters et W. H. Zurek, « A single quantum cannot be cloned », Nature, vol. 299, no 5886, p. 802‑803, oct. 1982, https://doi.org/10.1038/299802a0.

S. Zhang, C. Xiang, et S. Xu, « 6G: Connecting Everything by 1000 Times Price Reduction », IEEE Open J. Veh. Technol., vol. 1, p. 107‑115, 2020, https://doi.org/10.1109/OJVT.2020.2980003.

G. Torlai et R. G. Melko, « Neural Decoder for Topological Codes », Phys. Rev. Lett., vol. 119, no 3, p. 030501, juill. 2017, https://doi.org/10.1103/PhysRevLett.119.030501.

Y. Liu et al., « Reconfigurable Intelligent Surfaces: Principles and Opportunities », IEEE Commun. Surv. Tutor., vol. 23, no 3, p. 1546‑1577, 2021, https://doi.org/10.1109/COMST.2021.3077737.

N. Ginige, A. S. de Sena, N. H. Mahmood, N. Rajatheva, and M. Latva-aho, "Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging," May 9, 2024, arXiv: 2406.07387. [Online]. Available: http://arxiv.org/abs/2406.07387. Accessed: Aug. 28, 2024.

W. Jiang et al., « Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review », IEEE Commun. Surv. Tutor., p. 1‑1, 2024, https://doi.org/10.1109/COMST.2024.3385908.

P.-C. Hsu, L.-H. Shen, C.-H. Liu, et K.-T. Feng, « Federated Deep Reinforcement Learning for THz-Beam Search with Limited CSI », in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), sept. 2022, p. 1‑6. https://doi.org/10.1109/VTC2022-Fall57202.2022.10012887.

C. Lin et G. Y. Li, « Adaptive Beamforming With Resource Allocation for Distance-Aware Multi-User Indoor Terahertz Communications », IEEE Trans. Commun., vol. 63, no 8, p. 2985‑2995, août 2015, https://doi.org/10.1109/TCOMM.2015.2440356.

A. Farhad et J.-Y. Pyun, « Terahertz Meets AI: The State of the Art », Sensors, vol. 23, no 11, p. 5034, mai 2023, https://doi.org/10.3390/s23115034.

R. C. Moioli et al., « Neurosciences and 6G: Lessons from and Needs of Communicative Brains », 3 avril 2020, arXiv: arXiv:2004.01834. https://doi.org/10.48550/arXiv.2004.01834.

S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, et Md. Asaduzzaman, « Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future », IEEE Access, vol. 7, p. 46317‑46350, 2019, https://doi.org/10.1109/ACCESS.2019.2909490.

J. Hatim, C. Habiba, and S. Chaimae, "Evolving Security for 6G: Integrating Software-Defined Networking and Network Function Virtualization into Next-Generation Architectures," Int. J. Adv. Comput. Sci. Appl., 2024, doi: 10.14569/ijacsa.2024.0150692. [Online]. Accessed: Aug. 29, 2024.

R. Chataut, M. Nankya, et R. Akl, « 6G Networks and the AI Revolution—Exploring Technologies, Applications, and Emerging Challenges », Sensors, vol. 24, no 6, Art. no 6, janv. 2024, https://doi.org/10.3390/s24061888.

M. S. Akbar, Z. Hussain, Q. Z. Sheng, et S. Mukhopadhyay, « 6G Survey on Challenges, Requirements, Applications, Key Enabling Technologies, Use Cases, AI integration issues and Security aspects », 2 juin 2022, arXiv: arXiv:2206.00868. https://doi.org/10.48550/arXiv.2206.00868.

A. M. Alwakeel et A. K. Alnaim, « Network Slicing in 6G: A Strategic Framework for IoT in Smart Cities », Sensors, vol. 24, no 13, Art. no 13, janv. 2024, https://doi.org/10.3390/s24134254.

R. Gupta, D. Reebadiya, et S. Tanwar, « 6G-enabled Edge Intelligence for Ultra -Reliable Low Latency Applications: Vision and Mission », Comput. Stand. Interfaces, vol. 77, p. 103521, août 2021, https://doi.org/10.1016/j.csi.2021.103521.

M. Z. Ali et al., « Quantum for 6G communication: A perspective », IET Quantum Commun., vol. 4, no 3, p. 112‑124, 2023, https://doi.org/10.1049/qtc2.12060.

Yu Lu, Hao Jiang, et Linglong Dai, « Artificial intelligence for RIS-aided wireless communications », ITU J. Future Evol. Technol., vol. 4, no 1, p. 70‑77, mars 2023, https://doi.org/10.52953/HYMY1464.

H. Elayan, O. Amin, B. Shihada, R. M. Shubair, et M.-S. Alouini, « Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems », IEEE Open J. Commun. Soc., vol. 1, p. 1‑32, 2020, https://doi.org/10.1109/OJCOMS.2019.2953633.

A. Elzanaty, A. Guerra, F. Guidi, D. Dardari, et M.-S. Alouini, « Toward 6G Holographic Localization: Enabling Technologies and Perspectives », IEEE Internet Things Mag., vol. 6, no 3, p. 138‑143, sept. 2023, https://doi.org/10.1109/IOTM.001.2200218.

T. Gong et al., « Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions », IEEE Commun. Surv. Tutor., vol. 26, no 1, p. 196‑257, 2024, https://doi.org/10.1109/COMST.2023.3309529.

B. Zong, X. Duan, C. Fan, et K. Guan, « 6G Technologies - Opportunities and Challenges », in 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), nov. 2020, p. 171‑173. https://doi.org/10.1109/ICTA50426.2020.9332024.

R. Deng, B. Di, H. Zhang, Y. Tan, et L. Song, « Reconfigurable Holographic Surface: Holographic Beamforming for Metasurface-Aided Wireless Communications », IEEE Trans. Veh. Technol., vol. 70, no 6, p. 6255‑6259, juin 2021, https://doi.org/10.1109/TVT.2021.3079465.

R. C. Moioli et al., « Neurosciences and 6G: Lessons from and Needs of Communicative Brains », 3 avril 2020, arXiv: arXiv:2004.01834. https://doi.org/10.48550/arXiv.2004.01834.

S. Glisic et B. Lorenzo, « Quantum computing and neuroscience for 6G/7G networks: Survey », Intell. Syst. Appl., vol. 23, p. 200346, sept. 2024, https://doi.org/10.1016/j.iswa.2024.200346.

I. A. Alimi et al., « 6G CloudNet: Towards a Distributed, Autonomous, and Federated AI-Enabled Cloud and Edge Computing », in 6G Mobile Wireless Networks, Y. Wu, S. Singh, T. Taleb, A. Roy, H. S. Dhillon, M. R. Kanagarathinam, et A. De, Éd., Cham: Springer International Publishing, 2021, p. 251‑283. https://doi.org/10.1007/978-3-030-72777-2_13.

Graphical Abstract

Downloads

Published

2025-04-01

Issue

Section

Review paper

How to Cite

Hendaoui, M. (2025). Integrating AI into Key Enabling Technologies for 6G Networks: A Review from SDN to Quantum Computing. Journal of Applied Engineering Science and Technology, 5(1). https://doi.org/10.69717/jaest.v5.i1.109