Design and Deployment of a Low-Cost IoT-Based Air Quality Monitoring System Using ESP32, BME688, and MQ135 Sensors in Urban Lagos, Nigeria


View 14/ 4 0

Authors

DOI:

https://doi.org/10.69717/jaest.v5.i2.139

Keywords:

low-cost device, air quality, meteorology, diurnal variation, urban pollution

Abstract

This study presents the design, calibration, and in-field deployment of an IoT sensor network at a low cost for monitoring real-time urban air quality in Lagos, Nigeria, for diurnal and locational differences in Carbon-dioxide (CO₂), Nitrogen dioxide (NO₂), Methane (CH₄,) and weather parameters. The homemade system, constructed at ₦121,500, provides multi-gas and weather monitoring at 27–81% cheaper compared to mid- and high-end commercial sensors. Five hotspots with elevated risk—Oshosi, Iyana Ipaja, UNILAG dump site, Olusosun landfill, and Super Bus Stop—were assessed by morning (06:00–09:00) and evening (19:00–22:00) sessions. Nighttime levels of pollutants were always higher, with CO₂ highest at 790 ppm than the morning's 740 ppm, and CH₄ highest at 0.44 ppm ((Olusosun landfill). These increases were during times of elevated temperature (27.9-32.7 °C), humidity (68–79%) and lower atmospheric pressure (1003–1012 hPa), conditions that would have restricted vertical dispersion. High positive correlations (r ≥ 0.83, p < 0.05) existed between meteorological parameters (atmospheric pressure, relative humidity, and temperature) and the four detected pollutant concentrations (MQ135 index, NO₂, CO₂, and CH₄) during morning and nighttime sampling durations. The system maintained >95% uptime and gave data output within three seconds of data taking, and was therefore highly reliable and robust for tropical urban environments. This method offers an affordable, scalable model of continuous pollution monitoring and evidence-based urban environmental management for rapidly growing cities.

Downloads

Download data is not yet available.

Author Biographies

  • Adeyinka David Adewoyin , Department of Physics, University of Lagos, Lagos, Nigeria.

    Physics

  • Olamide Florence Humphrey , Department of Biological Science, Mountain Top University, Ogun State, Nigeria

    Biological Sciences

  • Oluwasegun Timothy Fakorede, Department of Physics, University of Lagos, Lagos, Nigeria.

    PHYSICS

References

Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., and Gumy, S. Half the world’s population are exposed to increasing air pollution. NPJ Climate and Atmospheric Science. 2020, 3(1), 23. https://doi.org/10.1038/s41612-020-0124-2.

Gul, H., and Das, B. K. The impacts of air pollution on human health and well-being: A comprehensive review. Journal of Environmental Impact and Management Policy, 2023, 36, 1-11. https://doi.org/10.55529/jeimp.36.1.11.

Milibari, A. A., Badri, H. M., Khan, W. A., and Rumchev, K. Public perception and knowledge on air pollution and its health effects in Makkah, Saudi Arabia. Journal of the Air & Waste Management Association. 2025, 75(8), 670–681. https://doi.org/10.1080/10962247.2025.2517779

Cordell, R.L., Panchal, R., Bernard, E., Gatari, M., Waiguru, E., Ng’ang’a, M., Nyang’aya, J., Ogot, M., Wilde, M.J., Wyche, K.P. and Abayomi, A.A. Volatile organic compound composition of urban air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere. 2021, 12(10), p.1329. https://doi.org/10.3390/atmos12101329.

Odu-Onikosi, A., Herckes, P., Fraser, M., Hopke, P., Ondov, J., Solomon, P. A., ... and Hidy, G. M.. Tropical air chemistry in Lagos, Nigeria. Atmosphere. 2022, 13(7), 1059. https://doi.org/10.3390/atmos13071059.

Tshuma, M. T., Mckenzie, R., Mathaha, T., Mayana, L., Cervello, A., Chabalala, V., ... and Mellado, B. AI_r: Transforming Air Quality Monitoring through Cost-Effective AI Solutions. In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP). 2024, (pp. 1-8). IEEE. https://doi.org/10.1109/IDAP64064.2024.10710650.

Salsabila, T., Mokoginta, D. P. A., Bonde, G. J. I., Nubala, A. A., Pambela, G. W., Mokoginta, Z., and Al Syarqiyah, S. Low Cost Sensor Technology Innovation in Air Quality Monitoring: A Systematic Literature Review on Opportunities for Public Budget Efficiency. Journal of Computation Physics and Earth Science (JoCPES). 2025, 5(1). https://doi.org/10.63581/jocpes.v5i1.14.

Paithankar, D. N., Pabale, A. R., Kolhe, R. V., William, P., and Yawalkar, P. M.. Framework for implementing air quality monitoring system using LPWA-based IoT technique. Measurement: Sensors. 2023, 26, 100709. https://doi.org/10.1016/j.measen.2023.100709.

Glass, T., Ali, S., Parr, B., Potgieter, J., & Alam, F. IoT enabled low cost air quality sensor. In 2020 IEEE Sensors Applications Symposium (SAS).2020, (pp. 1-6). IEEE. https://doi.org/10.1109/SAS48726.2020.9220079.

Arroyo, P., Gómez-Suárez, J., Suárez, J.I. and Lozano, J. Low-cost air quality measurement system based on electrochemical and PM sensors with cloud connection. Sensors, 2021, 21(18), p.6228. https://doi.org/10.3390/s21186228.

Barot V, Kapadia V. Air quality monitoring systems using IoT: a review. In2020 international conference on computational performance evaluation (ComPE) 2020 Jul 2 (pp. 226-231). IEEE. https://doi.org/10.1109/ComPE49325.2020.9200053

Kobbekaduwa, N., Oruthota, P., & De Mel, W. R. (2021). Calibration and implementation of heat cycle requirement of MQ-7 semiconductor sensor for detection of carbon monoxide concentrations. https://doi.org/10.31357/AIT.V1I2.5068.

MQ-135 GAS SENSOR. Available online: https://www.olimex.com/Products/Components/Sensors/SNS-MQ135/resources/SNS MQ135.pdf (accessed on 24 February 2025).

WINSEN GAS SENSOR. Available online: Alldatasheet.com. MQ135 Download. https://www.alldatasheet.com/datasheet-pdf/download/1307647/WINSEN/MQ135.html (accessed on 24 February 2025).

Sensors. (2021). Available online: https://pslab.io/sensors. (accessed on 24 February 2025).

Idrees, Z., Zou, Z., & Zheng, L. (2018). Edge computing based IoT architecture for low cost air pollution monitoring systems: a comprehensive system analysis, design considerations & development. Sensors, 18(9), 3021. https://doi.org/10.3390/s18093021.

AirGradient (no date) Shop. Available at: https://www.airgradient.com/shop/ (Accessed 20 August 2025).

IQAir (no date) Home page. Available at: https://www.iqair.com/(Accessed 20 August 2025).

PurpleAir (no date) Real-time air quality monitoring by PurpleAir. Available at: https://www2.purpleair.com/(Accessed 20 August 2025).

The World Air Quality Index project (no date) GAIA A08 - Open Source Air Quality Monitor : compact & hackable air quality monitoring station. Available at: https://aqicn.org/gaia/a08/(Accessed 20 August 2025).

The World Air Quality Index project (no date b) GAIA A12 Air Quality Monitoring Station. Available at: https://aqicn.org/gaia/a12/(Accessed 20 August 2025).

The World Air Quality Index project (no date c) GAIA A18 Air Quality Monitoring Station: solar panel powered and long distance LoRA radio. Available at: https://aqicn.org/gaia/a18/(Accessed 20 August 2025).

Okafor, C. L., Chukwu, F. S., and Ahove, M. A. Comparative assessment of air quality in Epe, and Olusosun dumpsites of Nigeria. Journal of Agriculture and Environmental Sciences. 2024, 9(1), 50-60. https://doi.org/10.4314/jaes.v9i1.4.

Omokpariola, D.O., Nduka, J.N. and Omokpariola, P.L., 2024. Short-term trends of air quality and pollutant concentrations in Nigeria from 2018–2022 using tropospheric sentinel-5P and 3A/B satellite data. Discover Applied Sciences, 6(4), p.182. https://doi.org/10.1007/s42452-024-05856-8.

Owoade, O. K., Abiodun, P. O., Omokungbe, O. R., Fawole, O. G., Olise, F. S., Popoola, O. O., ... and Hopke, P. K. Spatial-temporal variation and local source identification of air pollutants in a semi-urban settlement in Nigeria using low-cost sensors. Aerosol and Air Quality Research. 2021, 21(10), 200598. https://doi.org/10.4209/aaqr.200598.

Mahmud, K., Mitra, B., Uddin, M. S., Hridoy, A. E. E., Aina, Y. A., Abubakar, I. R., ... and Rahman, M. M. Temporal assessment of air quality in major cities in Nigeria using satellite data. Atmospheric Environment: 2023, 20, 100227. https://doi.org/10.1016/j.aeaoa.2023.100227.

Daramola, S.O. and Makinde, E.O. Modeling air pollution around major dumpsites in Lagos State using geospatial methods with solutions. Environmental Challenges. 2024, 16, p.100969. https://doi.org/10.1016/j.envc.2024.100969.

Kumar, A., Sharma, G., Sharma, A., Chopra, P., and Rattan, P. (Eds.). Advances in Networks, Intelligence and Computing: Proceedings of the International Conference On Networks, Intelligence and Computing (ICONIC 2023) (1st ed.). CRC Press. https://doi.org/10.1201/9781003430421.

Wegener, A. (1926). Thermodynamics of the atmosphere. In application of thermodynamics (pp. 156-189). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-90779-1_3.

Harrell, J. W., and Gabler, M. C. (2023). The pressure point of altitude research. Journal of Applied Physiology, 135(5), 1213-1213. https://doi.org/10.1152/japplphysiol.00736.2023.

Segun, A. A., Kehinde, D. A., and Adebmbo, A. A. (2018). Analysis of radio refractivity variations across geographical coordinates of Nigeria. Journal of Information Engineering and Applications, 8(3), 1-6.

Okimiji, O. P., Techato, K., Simon, J. N., Tope-Ajayi, O. O., Okafor, A. T., Aborisade, M. A., and Phoungthong, K.. Spatial pattern of air pollutant concentrations and their relationship with meteorological parameters in coastal slum settlements of Lagos, Southwestern Nigeria. Atmosphere. 2021, 12(11), 1426. https://doi.org/10.3390/atmos12111426.

Yang, Y., Fan, S., Wang, L., Gao, Z., Zhang, Y., Zou, H., ... and Lolli, S. Diurnal evolution of the wintertime boundary layer in urban Beijing, China: Insights from Doppler Lidar and a 325-m meteorological tower. Remote Sensing. 2020, 12(23), 3935. https://doi.org/10.3390/rs12233935.

Askariyeh, M.H., Vallamsundar, S. and Farzaneh, R. Investigating the impact of meteorological conditions on near-road pollutant dispersion between daytime and nighttime periods. Transportation Research Record. 2018, 2672(25), pp.99-110. https://doi.org/10.1177/0361198118796966.

Jbara, A. A. Environmental and Health Impacts Resulting From Burning Solid Waste Near Residential Areas in Diyala Governorate, Iraq. Academia Open. 2024, 9(2), 10-21070. https://doi.org/10.21070/acopen.9.2024.10088.

Hart, R., Liang, L., and Dong, P. Monitoring, mapping, and modeling spatial–temporal patterns of PM2. 5 for improved understanding of air pollution dynamics using portable sensing technologies. International journal of environmental research and public health. 2020, 17(14), 4914. https://doi.org/10.3390/ijerph17144914.

Arunab, K.S. and Mathew, A. Quantifying urban heat island and pollutant nexus: A novel geospatial approach. Sustainable Cities and Society. 2024, 101, p.105117. https://doi.org/10.1016/j.scs.2023.105117.

Vanaja M, D. P., Esakkiammal A, Parameshwari M. V, M. Afrinaa, and Thangaraj J. Air Quality Monitoring System Using Arduino. In 2025 International Conference on Advanced Computing Technologies (ICoACT), Sivalasi, India. 2025, (pp. 1-6). IEEE.

https://doi.org/10.1109/ICoACT63339.2025.11005322.

Aceveda, E.J.B., Lopez, E.S., Mendoza, C.D.H., Delmo, J.A.B., Sarmiento, J.S. and Rayos, M.J.F.T. Evaluating the Correlation between MQ Gas Sensors with Temperature and Humidity Sensor on an Outdoor Setting. In 2024 14th International Conference on System Engineering and Technology (ICSET). 2024, (pp. 12-16). IEEE. https://doi.org/10.1109/ICSET63729.2024.10774817

Mishra, G., Sharma, A., Shaini, A., and Saxena, S. Air Quality Monitoring Using MQ135 Gas Sensor and Arduino Uno. International Journal of Latest Technology in Engineering, Management & Applied Science. 2025, 14(5), 1097-1101. https://doi.org/10.51583/ijltemas.2025.140500119.

Tariq, H., Abdaoui, A., Touati, F., Al-Hitmi, M. A. E., Crescini, D., and Manouer, A. B. A real-time gradient aware multi-variable handheld urban scale air quality mapping IoT system. In 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS). 2020, (pp. 1-5). IEEE.

Vannucci, P. F., and Cohen, R. C. Temperature-Dependent Nighttime Stagnation Episodes Driving Decadal Air Pollutant Exceedances in Los Angeles. ACS ES&T Air. 2024, 1(6), 474-480. https://doi.org/10.1021/acsestair.3c00080.

Levy, I., Mihele, C., Lu, G., Narayan, J., and Brook, J. R. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environmental health perspectives. 2014, 122(1), 65-72. https://doi.org/10.1289/ehp.1306518.

Zhang, H., Wang, Y., Hu, J., Ying, Q.,and Hu, X. M. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental research. 2015, 140, 242-254. https://doi.org/10.1016/j.envres.2015.04.004.

Wei, C., Wang, M., Fu, Q., Dai, C., Huang, R., & Bao, Q. (2020). Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions. Atmospheric Research, 235, 104759. https://doi.org/10.1016/j.atmosres.2019.104759

Fikeraddis, M. and Endeshaw, L. Influence of temperature and relative humidity on air pollution in Addis Ababa, Ethiopia. Journal of Environmental & Earth Sciences. 2020, 2(2). https://doi.org/10.30564/jees.v2i2.2286.

Ulutaş, K., Abujayyab, S. K., and Amr, S. A., 2021. Evaluation of the major air pollutants levels and its interactions with meteorological parameters in Ankara. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1284-1295. https://doi.org/10.21923/jesd.939724.

Lelandais, L., Xueref-Remy, I., Riandet, A., Blanc, P. E., Armengaud, A., Oppo, S., ... and Delmotte, M. Analysis of 5.5 years of atmospheric CO2, CH4, CO continuous observations (2014–2020) and their correlations, at the Observatoire de Haute Provence, a station of the ICOS-France national greenhouse gases observation network. Atmospheric Environment. 2022, 277, 119020. https://doi.org/10.1016/j.atmosenv.2022.119020.

Qi, X., Mei, G., Cuomo, S., Liu, C., and Xu, N. Data analysis and mining of the correlations between meteorological conditions and air quality: A case study in Beijing. Internet of Things. 2021, 14, 100127. https://doi.org/10.1016/j.iot.2019.100127.

Tope, A. T., Sawyerr, H. O., and Afolabi, O. O. Dumpsite Emissions in Southwestern Nigeria: Assessing the Relationships Between Atmospheric Conditions, Ghgs and Air Pollutant. International Journal of Latest Technology in Engineering, Management & Applied Science. 2025, 14(5), 1013-1017. https://doi.org/10.51583/ijltemas.2025.140500106.

Owoade, O. K., Abiodun, P. O., Omokungbe, O. R., Fawole, O. G., Olise, F. S., Popoola, O. O., ... & Hopke, P. K. (2021). Spatial-temporal variation and local source identification of air pollutants in a semi-urban settlement in Nigeria using low-cost sensors. Aerosol and Air Quality Research, 21(10), 200598. https://doi.org/10.4209/aaqr.200598.

Whitehill, A. R., Long, R. W., Urbanski, S. P., Colón, M., Habel, A., & Landis, M. S. (2022). Evaluation of Cairpol and Aeroqual air sensors in biomass burning plumes. Atmosphere, 13(6), 877. https://doi.org/10.3390/atmos13060877.

Martin, C. R., Zeng, N., Karion, A., Dickerson, R. R., Ren, X., Turpie, B. N., & Weber, K. J. (2017). Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor. Atmospheric measurement techniques, 10(7), 2383-2395. https://doi.org/10.5194/AMT-10-2383-2017.

Bauerová, P., Šindelářová, A., Rychlík, Š., Novák, Z., & Keder, J. (2020). Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory. Atmosphere, 11(5), 492. https://doi.org/10.3390/atmos11050492.

Diez, S., Lacy, S., Coe, H., Urquiza, J., Priestman, M., Flynn, M., ... & Edwards, P. M. (2024). Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study. Atmospheric Measurement Techniques, 17(12), 3809-3827. https://doi.org/10.5194/amt-17-3809-2024.

Dheer, I., Mehta, S., Somanchi, S., Nelson, A., & Srivastava, A. (2025). Pre-Deployment Calibration Framework for Low-Cost Gas Sensors: An Adaptive Environmental Parameter Model. IEEE Sensors Letters. https://doi.org/10.1109/LSENS.2025.3576152.

Buehler, C., Xiong, F., Zamora, M. L., Skog, K. M., Kohrman-Glaser, J., Colton, S., ... & Gentner, D. R. (2021). Stationary and portable multipollutant monitors for high-spatiotemporal-resolution air quality studies including online calibration. Atmospheric measurement techniques, 14(2), 995-1013. https://doi.org/10.5194/amt-14-995-2021.

Araújo, T., Silva, L., & Moreira, A. (2020). Evaluation of low-cost sensors for weather and carbon dioxide monitoring in internet of things context. IoT, 1(2), 286-308. https://doi.org/10.3390/iot1020017.

Graphical Abstract

Published

2025-12-05

Issue

Section

Research Paper

How to Cite

Humphrey, I., David Adewoyin , A. ., Florence Humphrey , O. ., & Timothy Fakorede, O. . (2025). Design and Deployment of a Low-Cost IoT-Based Air Quality Monitoring System Using ESP32, BME688, and MQ135 Sensors in Urban Lagos, Nigeria. Journal of Applied Engineering Science and Technology, 5(2). https://doi.org/10.69717/jaest.v5.i2.139

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.