JAEST LOGO

Authors

Chaima Toumi Department of Mechanical Engineering, Faculty of Technology, University of Biskra 07000, Algeria Author
Foued Chabane Laboratoire de Génie Mécanique (LGM), Faculty of Technology, University of Biskra 07000, Algeria Author
Amira Hecini Department of Mechanical Engineering, Faculty of Technology, University of Biskra 07000, Algeria Author
Zouhair Aouissi Laboratoire de Génie Mécanique (LGM), Faculty of Technology, University of Biskra 07000, Algeria Author

DOI:

https://doi.org/10.69717/jaest.v5.i1.112

Keywords:

Beetroots, Beta vulgaris L, Drying process, Moisture ratio, Oven dryer, Forced convection

Abstract

Removal of moisture from food is popularly called drying and it is one of the most vital preservation techniques used in the food industry. In this study, the beetroots (Beta vulgaris L.) were dried in a laboratory oven dryer. The samples of fresh beetroots were dehydrated under a temperature of 50°C. The experimental study selected three different forms of the product, we choose a square form with (5 × 5 cm) and thickness e = 5 mm, a semi-circle form with thickness e = 5 mm and diameter D = 5 mm, and a triangle form with (5 × 5 × 5 cm) and thickness e = 4 mm. The main objective of the present study is to find the selection of the drying techniques essential to producing high-quality dried products in a rational time. The results give the moisture ratio of the different forms of the beetroot product as a function of time drying, while the triangle form responded to the drying process faster than the other two forms.

Highlights

  1. Beets dried at 50 °C in oven using 3 geometric shapes.
  2. Triangle shape dried fastest due to smaller thickness.
  3. Moisture ratio dropped to nearly zero after 325 min.
  4. Square shape retained more water and dried slower.
  5. Drying time linked more to thickness than shape.

Downloads

Download data is not yet available.

References

Alibas Ozkan, I., & Isik, E. (2001) Determination of drying parameters in microwave drying of apricot and sweet cherry. In First stone fruits symposium. Yalova: Turkey.

Chabane, F., Moummi, N., & Brima, A. (2023). An experimental study and mathematical modeling of solar drying of moisture content of the mint, apricot, and green pepper. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 4697-4711. https://doi.org/10.1080/15567036.2019.1670755

Chabane, F., Adouane, F., Moummi, N., Brima, A., & Bensahal, D. (2019). Mathematical Modeling of Drying of Mint in a Forced Convective Dryer Based on Important Parameters. International Journal of Heat & Technology, 37(2). https://doi.org/10.18280/ijht.370222

Chabane, F., & Adouane, F. (2018). Experimental investigation of the solar drying and solar collector design for drying agricultural product (mint). Chemical Engineering Transactions, 71, 1387-1392. https://doi.org/10.3303/CET1871232

Salah, T. M., Chabane, F., Arif, A., Aouissi, Z., Bensahal, D., Moummi, N., & Brima, A. (2021). Dehydration the orange slicesby solar drying, and effects of thickness on moisture ratio.

https://easychair.org/publications/preprint/BpDv

Wang, J., & Sheng, K. (2006). Far-infrared and microwave drying of peach. LWT-Food Science and Technology, 39(3), 247-255. https://doi.org/10.1016/j.lwt.2005.02.001

Walde, S. G., Balaswamy, K., Velu, V., & Rao, D. G. (2002). Microwave drying and grinding characteristics of wheat (Triticum aestivum). Journal of Food Engineering, 55(3), 271-276. https://doi.org/10.1016/S0260-8774(02)00101-2

Ranjbaran, M., & Zare, D. (2013). Simulation of energetic-and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy, 59, 484-493. https://doi.org/10.1016/j.energy.2013.06.057

Manickavasagan, A., Jayas, D. S., & White, N. D. G. (2006). Non-uniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559-1567. https://doi.org/10.1080/07373930601030796

Hemis, M., Choudhary, R., & Watson, D. G. (2012). A coupled mathematical model for simultaneous microwave and convective drying of wheat seeds. Biosystems engineering, 112(3), 202-209. https://doi.org/10.1016/j.biosystemseng.2012.04.002

Sorour, H., & El-Mesery, H. A. N. Y. (2014). Effect of microwave and infrared radiation on drying of onion slices. International Journal of Natural and Social Sciences, 2, 119-130.

Walde, S. G., Velu, V., Jyothirmayi, T., & Math, R. G. (2006). Effects of pretreatments and drying methods on dehydration of mushroom. Journal of food engineering, 74(1), 108-115. https://doi.org/10.1016/j.jfoodeng.2005.02.008

Reyes, A., Ceron, S., Zuniga, R., & Moyano, P. (2007). A comparative study of microwave-assisted air drying of potato slices. Biosystems Engineering, 98(3), 310-318. https://doi.org/10.1016/j.biosystemseng.2007.07.006

Sharma, G. P., & Prasad, S. (2006). Specific energy consumption in microwave drying of garlic cloves. Energy, 31(12), 1921-1926. https://doi.org/10.1016/j.energy.2005.08.006

Darvishi, H., KHOSH, T. M., Najafi, G., & Nargesi, F. (2013). Mathematical modeling of green pepper drying in microwave-convective dryer.

Pati, G. D., Pardeshi, I. L., & Shinde, K. J. (2015). Drying of green leafy vegetables using microwave oven dryer. Journal Ready to Eat Food, 2(1), 18-26.

Motevali, A., Minaei, S., Banakar, A., Ghobadian, B., & Darvishi, H. (2016). Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal of the Saudi Society of Agricultural Sciences, 15(2), 179-187. https://doi.org/10.1016/j.jssas.2014.11.003

Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems engineering, 89(2), 167-173. https://doi.org/10.1016/j.biosystemseng.2004.07.008

Farhang, A., Hosinpour, A., Darvishi, H., Khoshtaghaza, M. H., & Hashtjin, T. T. (2010). Accelerated drying of alfalfa (Medicago sativa L.) by microwave. http://www.idosi.org/gv/gv5(3)10/1.pdf

Wang, Z., Sun, J., Chen, F., Liao, X., & Hu, X. (2007). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. Journal of Food Engineering, 80(2), 536-544. https://doi.org/10.1016/j.jfoodeng.2006.06.019

Kassem, A. S., Shokr, A. Z., El-Mahdy, A. R., Aboukarima, A. M., & Hamed, E. Y. (2011). Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying. Journal of the Saudi Society of Agricultural Sciences, 10(1), 33-40. https://doi.org/10.1016/j.jssas.2010.05.001

Wang, J., & Sheng, K. (2006). Far-infrared and microwave drying of peach. LWT-Food Science and Technology, 39(3), 247-255. https://doi.org/10.1016/j.lwt.2005.02.001

Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi society of agricultural sciences, 14(1), 41-47. https://doi.org/10.1016/j.jssas.2013.06.002

Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of food engineering, 48(2), 177-182. https://doi.org/10.1016/S0260-8774(00)00155-2

Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of food engineering, 44(2), 71-78. https://doi.org/10.1016/S0260-8774(99)00167-3

Abbaspour‐Gilandeh, Y., Kaveh, M., & Jahanbakhshi, A. (2019). The effect of microwave and convective dryer with ultrasound pre‐treatment on drying and quality properties of walnut kernel. Journal of Food Processing and Preservation, 43(11), e14178. https://doi.org/10.1111/jfpp.14178

Kouchakzadeh, A., & Shafeei, S. (2010). Modeling of microwave-convective drying of pistachios. Energy conversion and management, 51(10), 2012-2015. https://doi.org/10.1016/j.enconman.2010.02.034

Darvishi, H., Azadbakht, M., Rezaeiasl, A., & Farhang, A. (2013). Drying characteristics of sardine fish dried with microwave heating. Journal of the Saudi society of agricultural sciences, 12(2), 121-127. https://doi.org/10.1016/j.jssas.2012.09.002

McLoughlin, C. M., McMinn, W. A. M., & Magee, T. R. A. (2000). Microwave drying of pharmaceutical powders. Food and bioproducts processing, 78(2), 90-96. https://doi.org/10.1205/096030800532798

Berteli, M. N., & Marsaioli Jr, A. (2005). Evaluation of short cut pasta air dehydration assisted by microwaves as compared to the conventional drying process. Journal of Food Engineering, 68(2), 175-183. https://doi.org/10.1016/j.jfoodeng.2004.04.043

Nistor, O. V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59-67. https://doi.org/10.1016/j.foodchem.2017.04.129

Mohammadzadeh, M., & Hatamipour, M. S. (2010). Effect of drying conditions on properties of dried sugar beet.

Amanah, H. Z., Rahayoe, S., & Amelia, A. I. (2016). Heat and mass transfer evaluation on sliced red beet (Beta vulgaris L) dried by simple hybrid dryer. Journal of Advanced Agricultural Technologies Vol, 3(4). https://doi.org/10.18178/joaat.3.4.265-269

Kamalakar, D., Rohinikumar, P., & Rao, L. N. (2016). Comparative studies of micro wave oven and tray drying on beetroot. International Journal for Innovative Research in Science & Technology, 2(10), 2349-6010. http://www.ijirst.org/articles/IJIRSTV2I10005.pdf

Gokhale, S. V., & Lele, S. S. (2011). Dehydration of red beet root (Beta vulgaris) by hot air drying: Process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), 955. https://doi.org/10.1007/s10068-011-0132-4

Dhiman, A., Suhag, R., Chauhan, D. S., Thakur, D., Chhikara, S., & Prabhakar, P. K. (2021). Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends in Food Science & Technology, 114, 443-458. https://doi.org/10.1016/j.tifs.2021.05.042

Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry, 272, 192-200. https://doi.org/10.1016/j.foodchem.2018.08.022

Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi society of agricultural sciences, 17(4), 408-415. https://doi.org/10.1016/j.jssas.2016.09.007

Malakar, S., Alam, M., & Arora, V. K. (2022). Evacuated tube solar and sun drying of beetroot slices: Comparative assessment of thermal performance, drying kinetics, and quality analysis. Solar Energy, 233, 246-258. https://doi.org/10.1016/j.solener.2022.01.029

Patel, Y.K., Patel, K. K., & Yadav, A. K. (2022). Studies on economic feasibility and effect of drying time on outlet air humidity during fluidized bed drying of beetroot (Beta vulgaris L.).

Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of food engineering, 98(4), 461-470. https://doi.org/10.1016/j.jfoodeng.2010.01.029

Graphical Abstract

Downloads

Published

2025-04-15

Issue

Section

Research Paper

How to Cite

Toumi, C., Chabane, F., Hecini, A., & Aouissi, Z. (2025). Drying of beetroots (Beta vulgaris L.) using oven dryer. Journal of Applied Engineering Science and Technology, 5(1). https://doi.org/10.69717/jaest.v5.i1.112

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.