logo

Auteurs-es

LADAOURI NOUR EL-HAYET University of Biskra, Biskra, Algeria. Auteur-e
MOULOUD CHERFAOUI Béjaia, Algeria. Auteur-e https://orcid.org/0000-0002-7991-6948

DOI :

https://doi.org/10.69717/ijams.v2.i1.117

Mots-clés :

Conditional density, Functional explanatory variables, Norms, Errors, Simulation

Résumé

This article focuses on the relationship between a scalar-explained random variable Y and a functional explanatory random variable X. Indeed, Through this work, we aim to estimate the conditional probability density f (y/x) when the explanatory variable X is functional using the kernel method.

More precisely, we will present a numerical application based on simulated samples, with the aim of, on the one hand, highlighting the implementation of the estimator in question and the impact of using a symmetric kernel on its quality. On the other hand, analyzing the performance of this estimator as a function of the sample size, the hypothesis imposed on the smoothing parameters (The smoothing parameters in the X direction and the Y direction are independent and the smoothing parameter in the X direction is the same as that in the Y direction) and the norm used in its construction.

 AMS subject classification. Primary 62G05; 62G07; Secondary 62R10.

Communicated Editor: A. Necir.

Manuscript received Jan 22, 2025; revised April 15, 2025; accepted May 25, 2025; published Jun 02, 2025.
References

[1] Bashtannyk, D. M., & Hyndman, R. J. (2001). Bandwidth selection for kernel conditional density estimation. Computational Statistics & Data Analysis, 36(3), 279-298. Search in Google Scholar. https://doi.org/10.1016/S0167-9473(00)00046-3

[2] Benhenni, K., Ferraty, F., Rachdi, M., & Vieu, P. (2007). Local smoothing regression with functional data. Computational Statistics, 22(3), 353-369.   ‏Search in Google Scholar. https://doi.org/10.1007/s00180-007-0045-0.

 [3] Bosq, D. (2000). Linear processes in function spaces: theory and applications (Vol. 149). Springer Science & Business Media.‏ Search in Google Scholar. View a book

[4] Chen, S. X. (1999). Beta kernel estimators for density functions. Computational Statistics & Data Analysis, 31(2), 131-145.‏ Search in Google Scholar. https://doi.org/10.1016/S0167-9473(99)00010-9

[5] Chen, S. X. (2000). Probability density function estimation using gamma kernels. Annals of the institute of statistical mathematics, 52, 471-480.‏ Seaarch in Google Scholar. https://doi.org/10.1023/A:1004165218295

[6] Dabo-Niang, S., & Laksaci, A. (2007). Propriétés asymptotiques d'un estimateur à noyau du mode conditionnel pour variable explicative fonctionnelle. In Annales de l'ISUP (Vol. 51, No. 3, pp. 27-42).‏  Search in Google Scholar. View article

[7] Delsol, L. (2008). Régression sur variable fonctionnelle: Estimation, tests de structure et Applications (Doctoral dissertation, Université Paul Sabatier-Toulouse III).‏ Search in Google Scholar. View

[8] Ezzahrioui, M., & Ould Saïd, E. (2005). Asymptotic normality of nonparametric estimators of the conditional mode for functional data (No. 249). Technical report.‏

 [9] Ezzahrioui, M. (2010). On the asymptotic properties of a nonparametric estimator of the conditional mode for functional dependent data. Statistica Neerlandika, 64, 171-201.‏Search in Google Scholar. View

[10] Ezzahrioui, M. H., & Ould-Saïd, E. (2008). Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. Journal of Nonparametric Statistics, 20(1), 3-18. Search in Google Scholar. https://doi.org/10.1080/10485250701541454

[11] Ferraty, F., Laksaci, A., & Vieu, P. (2006). Estimating some characteristics of the conditional distribution in nonparametric functional models. Statistical Inference for Stochastic Processes, 9, 47-76.‏ Search in Google Scholar. https://doi.org/10.1007/s11203-004-3561-3

[12] Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables. Journal of Statistical planning and inference, 140(2), 335-352.‏ Search in Google Scholar. https://doi.org/10.1016/j.jspi.2009.07.019

 [13] Ferraty, F., Rabhi, A., & Vieu, P. (2008). Non-parametric estimation of the hazard function with functional explanatory variable. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 53(1), 1-18.‏ Search in Google Scholar.

 [14] Ferraty, F. (2006). Nonparametric functional data analysis. Springer.‏ Search in Google Scholar. https://doi.org/10.1007/0-387-36620-2

 [15] Härdle, W., & Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. The Annals of Statistics, 1465-1481.‏ Search in Google Scholar. https://www.jstor.org/stable/2241365

[16] Laksaci, A. (2007). Convergence en moyenne quadratique de l'estimateur à noyau de la densité conditionnelle avec variable explicative fonctionnelle. In Annales de l'ISUP, Vol. 51, No. 1-2, pp. 69-80.‏  Search in Google Scholar. https://hal.science/hal-03635451v1

[17] Laksaci, A., Madani, F., & Rachdi, M. (2013). Kernel conditional density estimation when the regressor is valued in a semi-metric space. Communications in Statistics-Theory and Methods, 42(19), 3544-3570.‏Search in Google Scholar.  https://doi.org/10.1080/03610926.2011.633733.

[18] Laksaci, A., & Mechab, Boubakeur. (2010). Estimation non paramétrique de la fonction de hasard avec variable explicative fonctionnelle: cas des données spatiales. Rev. Roumaine Math. Pures Appl, 55(1), 35-51.‏ Search in Google Scholar. RechearchGate.

[19] Rachdi, M., & Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of statistical planning and inference, 137(9), 2784-2801.‏ Search in Google Scholar. https://doi.org/10.1016/j.jspi.2006.10.001

[20] Ramsay, J. O., & Silverman, B. W. (2005). Principal components analysis for functional data. Functional data analysis, 147-172.‏ Search in Google Scholar. https://doi.org/10.1007/0-387-22751-2_8

[21] Rosenblatt, M. (1969). Conditional probability density and regression estimators. Multivariate analysis II, 25, 31.‏ Search in Google Scholar.

[22] Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 65-78.‏ Search in Google Scholar. https://www.jstor.org/stable/4615859

[23] Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.‏ Search in Google Scholar. https://doi.org/10.1201/9781315140919

Téléchargements

Les données de téléchargement ne sont pas encore disponible.

Biographies de l'auteur-e

  • LADAOURI NOUR EL-HAYET, University of Biskra, Biskra, Algeria.

    (N.E.H Ladaouri) Postal address:, Mathematics Department,

  • MOULOUD CHERFAOUI, Béjaia, Algeria.

    (M.Cherfaoui) Postal address:, esearch unit LaMOS (System Modeling and optimization), University of Béjaia, 

Références

Bashtannyk, D. M., & Hyndman, R. J. (2001). Bandwidth selection for kernel conditional density estimation. Computational Statistics & Data Analysis, 36(3), 279-298. Search in Google Scholar. https://doi.org/10.1016/S0167-9473(00)00046-3

Benhenni, K., Ferraty, F., Rachdi, M., & Vieu, P. (2007). Local smoothing regression with functional data. Computational Statistics, 22(3), 353-369. Search in Google Scholar. https://doi.org/10.1007/s00180-007-0045-0.

Bosq, D. (2000). Linear processes in function spaces: theory and applications (Vol. 149). Springer Science & Business Media. Search in Google Scholar. View a book

Chen, S. X. (1999). Beta kernel estimators for density functions. Computational Statistics & Data Analysis, 31(2), 131-145. Search in Google Scholar. https://doi.org/10.1016/S0167-9473(99)00010-9

Chen, S. X. (2000). Probability density function estimation using gamma kernels. Annals of the institute of statistical mathematics, 52, 471-480. Seaarch in Google Scholar. https://doi.org/10.1023/A:1004165218295

Dabo-Niang, S., & Laksaci, A. (2007). Propriétés asymptotiques d'un estimateur à noyau du mode conditionnel pour variable explicative fonctionnelle. In Annales de l'ISUP (Vol. 51, No. 3, pp. 27-42). Search in Google Scholar. View article

Delsol, L. (2008). Régression sur variable fonctionnelle: Estimation, tests de structure et Applications (Doctoral dissertation, Université Paul Sabatier-Toulouse III). Search in Google Scholar. View

Ezzahrioui, M., & Ould Saïd, E. (2005). Asymptotic normality of nonparametric estimators of the conditional mode for functional data (No. 249). Technical report.

Ezzahrioui, M. (2010). On the asymptotic properties of a nonparametric estimator of the conditional mode for functional dependent data. Statistica Neerlandika, 64, 171-201.Search in Google Scholar. View

Ezzahrioui, M. H., & Ould-Saïd, E. (2008). Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. Journal of Nonparametric Statistics, 20(1), 3-18. Search in Google Scholar. https://doi.org/10.1080/10485250701541454

Ferraty, F., Laksaci, A., & Vieu, P. (2006). Estimating some characteristics of the conditional distribution in nonparametric functional models. Statistical Inference for Stochastic Processes, 9, 47-76. Search in Google Scholar. https://doi.org/10.1007/s11203-004-3561-3

Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables. Journal of Statistical planning and inference, 140(2), 335-352. Search in Google Scholar. https://doi.org/10.1016/j.jspi.2009.07.019

Ferraty, F., Rabhi, A., & Vieu, P. (2008). Non-parametric estimation of the hazard function with functional explanatory variable. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 53(1), 1-18. Search in Google Scholar.

Ferraty, F. (2006). Nonparametric functional data analysis. Springer. Search in Google Scholar. https://doi.org/10.1007/0-387-36620-2

Härdle, W., & Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. The Annals of Statistics, 1465-1481. Search in Google Scholar. https://www.jstor.org/stable/2241365

Laksaci, A. (2007). Convergence en moyenne quadratique de l'estimateur à noyau de la densité conditionnelle avec variable explicative fonctionnelle. In Annales de l'ISUP, Vol. 51, No. 1-2, pp. 69-80. Search in Google Scholar. https://hal.science/hal-03635451v1

Laksaci, A., Madani, F., & Rachdi, M. (2013). Kernel conditional density estimation when the regressor is valued in a semi-metric space. Communications in Statistics-Theory and Methods, 42(19), 3544-3570.Search in Google Scholar. https://doi.org/10.1080/03610926.2011.633733.

Laksaci, A., & Mechab, Boubakeur. (2010). Estimation non paramétrique de la fonction de hasard avec variable explicative fonctionnelle: cas des données spatiales. Rev. Roumaine Math. Pures Appl, 55(1), 35-51. Search in Google Scholar. RechearchGate.

Rachdi, M., & Vieu, P. (2007). Nonparametric regression for functional data: automatic smoothing parameter selection. Journal of statistical planning and inference, 137(9), 2784-2801. Search in Google Scholar. https://doi.org/10.1016/j.jspi.2006.10.001

Ramsay, J. O., & Silverman, B. W. (2005). Principal components analysis for functional data. Functional data analysis, 147-172. Search in Google Scholar. https://doi.org/10.1007/0-387-22751-2_8

Rosenblatt, M. (1969). Conditional probability density and regression estimators. Multivariate analysis II, 25, 31. Search in Google Scholar.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 65-78. Search in Google Scholar. https://www.jstor.org/stable/4615859

Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge. Search in Google Scholar. https://doi.org/10.1201/9781315140919

Téléchargements

Publié

2025-06-02

Numéro

Rubrique

Articles

Comment citer

On the Kernel Conditional Density Estimator with Functional Explanatory Variable. (2025). International Journal of Applied Mathematics and Simulation, 2(1), 40-49. https://doi.org/10.69717/ijams.v2.i1.117