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abstract

This article focuses on the relationship between a scalar-explained random variable Y and a functional
explanatory random variable X. In fact, through this work, the aim is to estimate the conditional
probability density f(y/x) when the explanatory variable X is functional using the kernel method. The
performance of the estimator is also analyzed with respect to sample size, assumptions on the smoothing
parameters (i.e., independence between the smoothing parameters in the X and Y directions, and equality
between them), and the choice of norm used in the estimation process.
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1. Introduction

The first work on the nonparametric kernel conditional density estimation, when the explanatory variable is
functional, was introduced by Ferraty et al. A. Ferraty and Vieu, 2006; F. Ferraty, 2006. With the same ap-
proach followed by Rosenblatt Rosenblatt, 1969, for the real explanatory variable, the authors have constructed
and analyzed the kernel conditional density estimator in the functional explanatory variable. Since these two
works, the literature has developed on the kernel estimation of the conditional density in the framework of
functional explanatory variables, its derivatives, and its applications in other fields, we can cite for example
the works of: Ezzahrioui and Ould Saïd M. Ezzahrioui, 2010; M. Ezzahrioui and E, 2005, Ezzahrioui E. [ N.
Ezzahrioui, 2008, Laksaci A. Laksaci and Mechab, 2010, Laksaci and Mechab A. N. Laksaci, 2007, Ferraty et
al. A. Ferraty and Vieu, 2008; F. Ferraty et al., 2010 and Dabo-Niang Dabo-Niang, 2007.

Let (X,Y ) be a couple of random variables in F×R, where (F, ∥.∥) is a functions space equipped with a norm
∥.∥, i.e X is a (time-dependent) functional random variable depending in time (X ≡ X(t)). Let (Xi, Yi)1≤i≤n

be n independent pairs, identically distributed as the couple (X,Y ) and (x, y) be a fixed element of F×R. The
kernel estimator of f(y/x) in this context is defined by:

f̂ab(y/x) =

n∑
j=1

K1

(
∥x−Xj∥p

a

)
K2

(
y−Yj

b

)
b

n∑
j=1

K1

(
∥x−Xj∥p

a

) , (1)
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where K1 is a real asymmetric kernel function on R+, K2 is a real symmetric kernel function on R, a > 0 and
b > 0 are the smoothing parameters in the X and Y directions respectively, and ∥.∥p is a p-distance defined on
F (for more details on the p-distance see Section 2).

In order to establish the mean square convergence of the estimator (1), Laksaci A. N. Laksaci, 2007 de-
fined the formulas for bias and variance and the asymptotic square error of the estimator. Also, Ferraty et
al. F. Ferraty, 2006, showed the both pointwisely and uniformly almost complete convergence of the estima-
tor in question. Ferraty et al. A. Ferraty and Vieu, 2006 estimated the J th order of derivative of the estimator 1.

To simplify the formula (1), we propose another version, similar to that used by Youndjé Youndjé, 1996
in the case of one explanatory variable, under the hypothesis that the two smoothing parameters a and b are
equal (h = a = b). So, the expression (1) can be rewritten as follows:

f̂h(y/x) =

n∑
j=1

K1

(
∥x−Xj∥p

h

)
K2

(
y−Yj

h

)
h

n∑
j=1

K1

(
∥x−Xj∥p

h

) , (2)

2. Concept of the norm

To study data, we often need to have a notion of distance between them. In mathematics, a distance (or metric)
d(., .) is an application that formalizes the intuitive idea of distance, i.e. it represents the length that separates
two points.

One of the most popular idea in mathematics to calculate a distance between two points is to use a p−norm
that we denote by ∥.∥p. Thus, to study the estimators introduced in the previous section, it is interesting to
recall some common norms used in such estimators.
Let F be a set of functions and x(t) and y(t) two functions defined in F. The most commonly used norms in
practice to measure the distance between these two functional points (these two functions) are presented in the
following table:

Name Parameter Expression
Manhattan norm 1-norm

∫
F |x(t)− y(t)| dt

Euclidian norm 2-norm
(∫

F(x(t)− y(t))2dt
) 1

2

Minkowski norm p-norm
(∫

F |x(t)− y(t)|p dt
) 1

p

Tchebychev norm ∞-norm lim
p→∞

(∫
F |x(t)− y(t)|p dt

) 1
p = sup

t
| x(t)− y(t) |

Table 1: Some norms which are generally used as distance in the
functional framework.

3. Choice of kernel and smoothing parameter

From the two expressions (1) and (2), it is clear that the implementation of these estimators relies on the
prior fixing of the kernel, the smoothing parameter, and the norm ∥.∥p. In our work, we focus particularly
on the problem of choosing the smoothing parameter, because the choice of the kernel function remains the
same as the univariate density. Furthermore, because ∥u∥p is always a positive quantity, the real kernel K1

should have positive support, consequently, we must use asymmetric density functions for the kernel K1 (see
Chen, 1999, 2000). While K2 we must use a symmetric density functions because y−Yj

h ∈ R (see Silverman,
2018). However, the problem of choosing the smoothing parameter has received serious attention because the
numerical and graphical characteristics of the designed kernel estimator are very sensitive to the variation of the
smoothing parameter, where small values of this parameter (compared to the optimal smoothing parameter)
generate the phenomenon of under-smoothing, while large values of this parameter generate the phenomenon
of over-smoothing.

Similarly to the cross-validation approach followed by Youndjé Youndjé, 1996 when the explanatory variable
is scalar, Rachdi and Vieu Rachdi and Vieu, 2007 and Benhenni et al. Benhenni et al., 2007 proposed,
respectively, a global leave-out-one-curve and a local adaptive leave-out-one-curve cross-validation procedure
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for the regression operator estimation in functional data. Laksaci et al. A. Laksaci et al., 2013 constructed
the global and local leave-out-one-curve cross-validation procedures in the context of conditional density when
the explanatory variable is functional.

Global and local bandwidth selection rules
The idea of this approach is based on minimizing the integrated squared error, which is weighted by the
probability measure, dPX(x), of the functional variable X and some non-negative weighting functions W1 and
W2 associated to the variables x and y respectively. That is to say, they considered the integrated squared
error defined by the following expression:

ISE(f̂ , f) =

∫ ∫ (
f̂(y/x)− f(y/x)

)2

W1(x)W2(y)dPX(x)dy. (3)

So, the mean integrated squared error will be given as follows:

MISE(f̂ , f) =

∫ ∫
E
(
f̂(y/x)− f(y/x)

)2

W1(x)W2(y)dPX(x)dy. (4)

Discretizing the expression (3) allows us to obtain an approximation of the mean square error given by:

ISE(f̂ , f) ≈ 1

n

n∑
i=1

(
f̂(Yi/Xi)− f(Yi/Xi)

)2 W1(Xi)W2(Yi)

f(Xi, Yi)
. (5)

Concerning the weighting functions W1 and W2, we recall that these functions were introduced to reduce
bounds effects thanks to their support. But, in practice, Härdle and Marron Härdle and Marron, 1985 have
emphasized that the role of their expressions is not very determining and that they are functions arbitrarily
chosen by the user. Laksaci et al. A. Laksaci et al., 2013 took the expressions of W1 and W2 in their simulation
as:

W2(z) =

{
1 if z ∈ [minYi, i = 1...n× 0.9maxYi, i = 1...n× 1.1]
0 otherwise,

and

W1(t) =

{
1 if min d(t,Xi) < a0
0 otherwise,

where a0 = min(aq) and aq is the quantile of order q of the vector of all distances between the curves.

We note that the ISE and MISE functions depend on the unknown conditional density f , so, in practice,
the smoothing parameters that minimize these errors are not computable. By following the same ideas as in
Youndjé Youndjé, 1996 for the real case, Laksaci et al. A. Laksaci et al., 2013 proposed another function that
is asymptotically equivalent to the quadratic distance given in (3). Where they suggest to replace (3) by the
integrated squared error expressed as follows:

ISE(f̂ , f) = A+B − 2C,

where

A =

∫ ∫
f̂(y/x)2W1(x)W2(y)dPX(x)dy,

B =

∫ ∫
f(y/x)2W1(x)W2(y)dPX(x)dy,

and

C =

∫ ∫
f̂(y/x)f(y/x)W1(x)W2(y)dPX(x)dy.

Since the second term B is independent of the smoothing parameter (a, b), the problem of minimizing
the ISE is equivalent to that of minimizing the function A − 2C. Thus, to select the bandwidth (a, b) that
minimizes the approximate ISE (AISE = A− 2C), we must first estimate the two quantities A and C whose
form are as follows;
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C =

∫ ∫
f̂(y/x)f(y/x)W1(x)W2(y)dPX(x)dy,

=

∫ ∫
f̂(y/x)W1(x)W2(y)dPY/X=x(y)dPX(x),

=

∫ ∫
f̂(y/x)W1(x)W2(y)dP(X,Y )(x, y),

= E(X,Y )

(
f̂(Y/X)W1(X)W2(Y )

)
,

and,

A = EX

(∫
f̂(y/X)W1(X)W2(y)dy

)
,

where EX denotes the mean associated with the distribution of the random variable X.

For the aim to minimize the function A − 2C, the authors have followed the idea of Rudemo Rudemo,
1982 and Rachdi and Vieu Rachdi and Vieu, 2007 where they adopted the cross-validation technique with
leave-out-one-curve principle. More precisely, they constructed the following criteria, for the global smoothing
parameter:

GCV (a, b) =
1

n

n∑
i=1

W1(Xi)

∫ (
f̂−i (y/Xi)

)2

W2(y)dy

− 2

n

n∑
i=1

f̂−i (Yi/Xi)W1(Xi)W2(Yi), (6)

and the following local criteria, for a fixed y ∈ R and x ∈ F;

LCV (a, b) =
1

n

n∑
i=1

W1,x(Xi)

∫ (
f̂2
−i (z/Xi)

)
W2,y(z)dz

− 2

n

n∑
i=1

f̂−i (Yi/Xi)W1,x(Xi)W2,y(Yi), (7)

where, W2,x (respectively W2,y) is some positive local weight function around x (respectively y), Laksaci et
al. A. Laksaci et al., 2013 used the following local weight functions:

W1,x =

{
1 if min d(t;x) < a(x);
0 otherwise

and W2,y(z) =

{
1 if |z − y| < b(y);
0 otherwise

where a(x) (respectively, for b(x)) the ball centered at x (respectively the interval centered at y) with radius
a(x) (respectively with radius b(y)) contains exactly k neighbors of x (respectively of y).

And f̂−i(y/x) represent the kernel conditional density estimator, using the cross-validation technique com-
puted from the set of points except the point (xi, yi), its formula is given by:

f̂−i(yi/xi) =

n∑
j=1,j ̸=i

K1

(
∥xi−Xj∥p

a

)
K2

(
yi−Yj

b

)
b

n∑
j=1,j ̸=i

K1

(
∥xi−Xj∥p

a

) ,

Hence, the global (respectively, local) cross-validation procedure consists of choosing the smoothing param-
eters (a, b) which minimize the criteria GCV (respectively LCV ).
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4. Numerical application

This section aims to illustrate, via numerical examples and using the simulation approach, how to implement
the conditional kernel density estimator when the explanatory variable is functional, and to verify the impact
of the substitution of the kernel K1, initially asymmetric, and the kernel K2 by a same symmetric kernel K.
Also, we focus in the choice of the norm used to calculate the distance between the points x(t) and xi(t) on the
quality of the designed estimator.

4.1. Presentation of the application and its parameters

In order to study the effect of using a symmetric kernel in the performance of kernel conditional density
estimation when the explanatory variable is functional, let consider that K1 = K2 = K, with K is a real
symmetric kernel function on R. that is, we rewrite (1) and (2) respectively as follows:

f̂ab(y/x) =

n∑
j=1

K
(

∥x−Xj∥p

a

)
K

(
y−Yj

b

)
b

n∑
j=1

K
(

∥x−Xj∥p

a

) , (8)

and

f̂h(y/x) =

n∑
j=1

K
(

∥x−Xj∥p

h

)
K

(
y−Yj

h

)
h

n∑
j=1

K
(

∥x−Xj∥p

h

) , (9)

In order to meet our objective, we have implemented a simulator in a Matlab environment, whose main steps
are:

1. Generate m samples (X
(l)
i , Y

(l)
i ) of size n of a target distribution, where l = 1, ...,m and i = 1, ..., n.

2. Compute (â, b̂) and ĥ that minimize the average of the ISE associated with each estimator.

3. Calculate the both estimators (8) and (9) and compare their performance.

To realize these steps, and for calculation reasons, we proposed to discretize (to approximate) the average
ISE. More precisely, we use the discretized expression of the average ISE that is given as follows: (see
Bashtannyk and Hyndman, 2001):

ISE =
∆

nN

m∑
l=1

J∑
j=1

n∑
i=1

[
f̂(y

′

j/x
(l)
i )− f(y

′

j/x
(l)
i )

]2
, (10)

where (xi, yi), i = 1, ..., n an independent and identically distributed observations from the joint density
of (X,Y ), y

′
=

(
y

′

1, y
′

2, ..., y
′

J

)
is a vector of equidistant points in the space of Y and ∆ = y

′

j+1 − y
′

j , ∀j ∈
{1, 2, ..., J − 1}.

Consequently, the estimators of the optimal smoothing parameters, in the sense of the average of the ISE,
correspond to the quantities which minimize the expression (10).

For the simulation example, we considered the following model, which represents a conditional density Y
knowing X = x follows a normal law with mean ∥x∥2 and variance 1, given by:

f(y/x) =
1√
2π

e−
1
2 (y−∥x∥2)

2

, (11)

and suppose that the explanatory variables Xi from a stochastic process similar to that proposed by Delsol
Delsol, 2008, and it defined by:

Xi = Xi(t) = ai cos(2πt) + bi sin(3πt) + ci(t− 0.45)(t− 0.75)e(−dit),

with t ∈ [0, 1], ai ⇝ N(−1, 1), bi ⇝ N(−1, 1), ci ⇝ U [1, 5] and di ⇝ U [1, 5], where N and U respectively
designate a normal distribution and a uniform distribution.

An illustration example about the variation of our model which defined in (11), depending on ∥x∥2 is
presented in figure 1. The Figure 2 represents an example of a sample of size n = 10 from the variable X,
where the red curve in the figure 2 represents the theoretical E(X(t)), that is to say when E(a) = E(b) = −1
and E(c) = E(d) = 3.
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Figure 1: Illustration curves about the variation of the density f(y/x) in depending on ∥x∥2.

Figure 2: Ten examples of a sample xi(t) generated from the variable X.



On the kernel conditional density estimator with functional explanatory variable 46

4.2. Numerical and graphic results

To obtained the results of the numerical application, we consider to use the Gaussian kernel and the norm
p ∈ {1, 2, ∞} in the construction of the two versions of the conditional density estimator in question. The
application was carried out on 100 samples (m = 100) of size n ∈ {50 , 100 , 200 , 500 , 1000 , 2000} at the
point x = E(X) (see figure 2).

The numerical results obtained in our application are arranged in Table 2 and are presented in Figures 3–4
.

a = b a ̸= b

Norm n ĥ ISEh (â, b̂) ISE(a;b)

50 0.8739 0.0187 ( 23.7655 ; 0.5509 ) 0.0064
100 0.8707 0.0176 ( 32.6362 ; 0.4953 ) 0.0043
200 0.8689 0.0166 ( 23.3421 ; 0.419 ) 0.0023

∥.∥1 500 0.8681 0.0162 ( 31.3126 ; 0.3695 ) 0.0014
1000 0.8672 0.0162 ( 28.8502 ; 0.3176 ) 0.001
2000 0.8665 0.0161 ( 35.6687 ; 0.2659 ) 0.0006
50 0.8771 0.0176 ( 23.6759 ; 0.5784 ) 0.0062
100 0.8703 0.0173 ( 21.494 ; 0.5151 ) 0.0039
200 0.867 0.0173 ( 17.8311 ; 0.4541 ) 0.003

∥.∥2 500 0.8668 0.0165 ( 30.8016 ; 0.348 ) 0.0014
1000 0.8667 0.016 ( 33.0062 ; 0.3195 ) 0.0008
2000 0.8662 0.0156 ( 39.1335 ; 0.2431 ) 0.0005
50 0.8817 0.0209 ( 28.8429 ; 0.5458 ) 0.0067
100 0.8747 0.0177 ( 23.7255 ; 0.4911 ) 0.0041
200 0.8674 0.0176 ( 26.9714 ; 0.4362 ) 0.0024

∥.∥∞ 500 0.8676 0.0165 ( 29.9083 ; 0.3765 ) 0.0016
1000 0.8663 0.0164 ( 37.9307 ; 0.2872 ) 0.0009
2000 0.8655 0.0164 ( 41.8221 ; 0.2384 ) 0.0006

Table 2: Variation of ISE according to the sample size n, the norm
∥.∥p and the hypothesis imposed on the smoothing parameters.
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Figure 3: Variation of ĥ and ISEĥ according to the sample size.

4.3. Discussion of results

Taking into account the numerical and graphical results obtained in the previous section, we note that:

• In all situations considered, the optimal smoothing parameters decrease where the sample size in-
creases, which coincides with the following fundamental property (condition) of the smoothing parameter:
lim
n→∞

h(n) = 0.

• Independently of the norm used, the estimators f̂ab(y/E(X)) and f̂h(y/E(X)) converge to f(y/E(X))
in L2 (average ISE) and this can be justified by the decrease of the average ISE (convergence to zero),
associated with the estimators in question, as the sample size n increases..

• The estimator f̂ab(y/E(X)) is more efficient, in the sense of the average ISE, than the estimator
f̂h(y/E(X)) and this independently of the sample size and the norm used for the construction of these
two estimators.

• The three norms used practically provide us with estimators of the same performance (average ISE). But
in general, we see that there is a slight preference:

– For the ∥.∥2 norm when the sample size is very small.
– For the ∥.∥1 norm when the sample size is medium.
– For the ∥.∥2 norm when the sample size is large.

• Because of the positivity of the distance between x and xi (∥x − xi∥p ≥ 0), the kernel must be defined
on a support positive when the explanatory variable is functional. Our results show that even for a
symmetric kernel we can have reasonable results.

5. Conclusion

By a small research in the literature, we can note that the conditional density when the explanatory variable is
functional is a rich problem in statistics and it is in high demand in many fields of application, see Bosq, 2000,
Bosq, 2000, F. Ferraty, 2006, Ramsay and Silverman, 2005. In this work, our objective was to present an
illustrative numerical example of the implementation of the conditional density estimator, when the explanatory
variable is functional, and we mainly focus on its performance as a function of the sample size, the hypothesis
imposed on the smoothing parameters, and the norm used in its construction, and to highlight the impact of
using a symmetric kernel on its quality.
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Figure 4: Variation of (â, b̂) and ISE(â,b̂) according to the sample size.
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