logo

Auteurs-es

Taieb Hamaizia OEB University, Oum El Bouaghi, Algeria Auteur-e https://orcid.org/0000-0002-2388-9127

DOI :

https://doi.org/10.69717/ijams.v2.i1.116

Mots-clés :

Complex metric space, Special function, Generalized contraction

Résumé

This paper delves into the forefront of fixed point theory, focusing on recent advancements within the context of contraction mappings in complex metric spaces. The study introduces a novel perspective by incorporating the pivotal role of control functions in elucidating the behavior and properties of fixed points. We investigate the interplay between contraction mappings and complex metric spaces via control function. We provide an example to illustrate our findings.

AMS subject classification. 47H10, 54H25.

Communicated Editor: A. Chala.

Manuscript received Dec 23, 2023; revised Sep 16, 2024; accepted Dec 11, 2024; published May 12, 2025.
References

[1] Azam Azam, A., Fisher, B., & Khan, M. (2011). Common Fixed Point Theorems in Complex Valued Metric Spaces. Numerical Functional Analysis and Optimization, 32(3), 243–253.  Search in Google Scholarhttps://doi.org/10.1080/01630563.2011.533046  .

[2 Bhatt, S., Chaukiyal, S., & Dimri, R. C. (2011). A common fixed point theorem for weakly compatible maps in complex valued metric spaces. Int. J. Math. Sci. Appl, 1(3), 1385-1389.‏ . Search in Google Scholar.  View Article.

[3] Kang, S. M., Kumar, M., Kumar, P., & Kumar, S. (2013). Coupled fixed point theorems in complex valued metric spaces. Int. J. Math. Anal, 7(46), 2269-2277. Search in Google Scholar. http://dx.doi.org/10.12988/ijma.2013.37181.

[4] Kutbi, M. A., Azam, A., Ahmad, J., & Di Bari, C. (2013). Some Common Coupled Fixed Point Results for Generalized Contraction in Complex‐Valued Metric Spaces. Journal of Applied Mathematics, 2013(1), 352927.‏

Search in Google Scholar. https://doi.org/10.1155/2013/352927.

[5] Ahmad, J., Klin-Eam, C., & Azam, A. (2013). Common fixed points for multivalued mappings in complex valued metric spaces with applications. In Abstract and applied analysis (Vol. 2013, No. 1, p. 854965). Hindawi Publishing Corporation.‏ Search in Google Scholar.  https://doi.org/10.1155/2013/854965

 [6] Manro, S. (2013). Some Common Fixed Point Theorems in Complex-Valued Metric Spaces Using Implicit Relation. International Journal of Analysis and Applications, 2(1), 62-70. ‏ Search in Google Scholar. https://doi.org/10.28924/2291-8639.

 [7] Mohanta, S. K., & Maitra, R. (2012). Common fixed point of three self mappings in complex valued metric spaces. International Journal of Mathematical Archive, 3(8), 2946-2953.‏ Search in Google Scholar.

 [8] Rouzkard, F., & Imdad, M. (2012). Some common fixed point theorems on complex valued metric spaces. Computers & Mathematics with Applications, 64(6), 1866-1874.‏ Search in Google Scholar. https://doi.org/10.1016/j.camwa.2012.02.063.

 [9] Sintunavarat, W., & Kumam, P. (2012). Generalized common fixed point theorems in complex valued metric spaces and applications. Journal of inequalities and Applications, 2012, 1-12.‏ Search in Google Scholar. https://doi.org/10.1186/1029-242X-2012-84.

 [10] Sitthikul, K., & Saejung, S. (2012). Some fixed point theorems in complex valued metric spaces. Fixed Point Theory and Applications, 2012, 1-11.‏ Search in Google Scholarhttps://doi.org/10.1186/1687-1812-2012-189

 [11] Verma, R. K., & Pathak, H. K. (2013). Common fixed point theorems for a pair of mappings in complex-valued metric spaces. Journal of mathematics and computer Science, 6, 18-26.‏ Search in Google Scholar. http://dx.doi.org/10.22436/jmcs.06.01.03.

 

Téléchargements

Les données de téléchargement ne sont pas encore disponible.

Biographie de l'auteur-e

  • Taieb Hamaizia, OEB University, Oum El Bouaghi, Algeria

    Postal address:, System Dynamics and Control Laboratory, Department of Mathematics and Informatics, OEB University, Algeria 

Téléchargements

Publié

2025-05-12

Numéro

Rubrique

Articles

Comment citer

On Fixed Point Theorems for Self-Mappings in Complex Metric Spaces with Special Functions. (2025). International Journal of Applied Mathematics and Simulation, 2(1), 34-39. https://doi.org/10.69717/ijams.v2.i1.116