logo

Authors

MOHAMED DILMI University of Blida 1 Author https://orcid.org/0000-0003-2114-8891
MOURAD DILMI Setif 1 University, Author https://orcid.org/0000-0003-3767-5653

DOI:

https://doi.org/10.69717/ijams.v2.i2.143

Keywords:

Asymptotic analysis, Dynamic elasticity system, Frictional boundary conditions, Variational formulation

Abstract

In this article, we investigate the asymptotic behavior of solutions to a dynamic linear elasticity problem in a thin domain Ω   R3, characterized by a nonlinear source term  and mixed boundary conditions: a strongly nonlinear friction law on one part of the boundary and a Dirichlet condition on the remainder. Our primary goal is to analyze the limiting behavior of the displacement field  as the thickness parameter  tends to zero.

Downloads

Download data is not yet available.

Author Biographies

  • MOHAMED DILMI, University of Blida 1

    LAMDA-RO Laboratory, Department of Mathematics, University of Blida 1, Po. Box 270 Soumaa, Blida, Algeria 

  • MOURAD DILMI, Setif 1 University,

    Applied Mathematics Laboratory, Department of Mathematics, Setif 1 University, 19000, Algeria

References

Dilmi, M. (2025). Asymptotic behavior of a nonlinear viscoelastic problems with Tresca friction law in a thin domain: M. Dilmi. Journal of Elliptic and Parabolic Equations, 11(1), 115-134. Google Scholar. https://doi.org/10.1007/s41808-024-00310-7.

Dilmi. M, Dilmi. M, Benseridi. H(2019)., Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rendiconti dell’Istituto di Matematica dell’Universit`a di Trieste, 51, pp. 41-60. https://doi.org/10.13137/2464-8728/27066

Dilmi, M., Dilmi, M., & Benseridi, H. (2019). Asymptotic analysis of quasistatic electro‐viscoelastic problem with Tresca's friction Law. Computational and Mathematical Methods, 1(3), e1028.‏ Google Scholar. https://doi.org/10.1002/cmm4.1028.

Chacha, D. A., & Miloudi, M. (2012). Asymptotic analysis of nonlinearly elastic shells “mixed approach”. Asymptotic Analysis, 80(3-4), 323-346.‏ Google Scholar. https://doi.org/10.3233/ASY-2012-1119

Gilbert, R. P., & Vashakmadze, T. S. (2000). A two-dimensional nonlinear theory of anisotropic plates. Mathematical and computer modelling, 32(7-8), 855-875.‏ Google Scholar. https://doi.org/10.1016/S0895-7177(00)00176-X.

Dilmi, M., & Otmani, S. (2023). Existence and asymptotic stability for generalized elasticity equation with variable exponent. Opuscula Mathematica, 43(3), 409-428.‏ Google Scholar. https://doi.org/10.7494/OpMath.2023.43.3.409.

Hale, J. K. (1992). Reaction-diffusion equation on thin domains. J. Math. Pures Appl., 71, 33-95.‏ Google Scholar.

Raugel, G. (1995). Dynamics of partial differential equations on thin domains in Dynamical systems (Montecatini Terme, 1994), 208-315. Lecture Notes in Math, 1609.‏ Google Scholar.

Dilmi, M., & Dilmi, M. (2025). EXISTENCE, UNIQUENESS AND ASYMPTOTIC ANALYSIS FOR A BOUNDARY VALUE PROBLEM WITH RIEMANN–LIOUVILLE FRACTIONAL DERIVATIVE. Memoirs on Differential Equations and Mathematical Physics, 95, 1-18.‏ Google Scholar.

Ciarlet, P. G. (1997). Mathematical elasticity. Theory of plates, vol. II. Studies in Mathematics and its Applications, 27.‏ Google Scholar. View.

Downloads

Published

2025-11-19

How to Cite

Asymptotic Analysis of a Dynamic Elasticity System withNonlinear Source Term  and Frictional Boundary Conditions in Thin Domains. (2025). International Journal of Applied Mathematics and Simulation, 2(2), 13-25. https://doi.org/10.69717/ijams.v2.i2.143