DOI:
https://doi.org/10.69717/ijams.v2.i2.143Keywords:
Asymptotic analysis, Dynamic elasticity system, Frictional boundary conditions, Variational formulationAbstract
In this article, we investigate the asymptotic behavior of solutions to a dynamic linear elasticity problem in a thin domain Ω ⊂ R3, characterized by a nonlinear source term and mixed boundary conditions: a strongly nonlinear friction law on one part of the boundary and a Dirichlet condition on the remainder. Our primary goal is to analyze the limiting behavior of the displacement field as the thickness parameter tends to zero.
Downloads
References
Dilmi, M. (2025). Asymptotic behavior of a nonlinear viscoelastic problems with Tresca friction law in a thin domain: M. Dilmi. Journal of Elliptic and Parabolic Equations, 11(1), 115-134. Google Scholar. https://doi.org/10.1007/s41808-024-00310-7.
Dilmi. M, Dilmi. M, Benseridi. H(2019)., Asymptotic behavior for the elasticity system with a nonlinear dissipative term, Rendiconti dell’Istituto di Matematica dell’Universit`a di Trieste, 51, pp. 41-60. https://doi.org/10.13137/2464-8728/27066
Dilmi, M., Dilmi, M., & Benseridi, H. (2019). Asymptotic analysis of quasistatic electro‐viscoelastic problem with Tresca's friction Law. Computational and Mathematical Methods, 1(3), e1028. Google Scholar. https://doi.org/10.1002/cmm4.1028.
Chacha, D. A., & Miloudi, M. (2012). Asymptotic analysis of nonlinearly elastic shells “mixed approach”. Asymptotic Analysis, 80(3-4), 323-346. Google Scholar. https://doi.org/10.3233/ASY-2012-1119
Gilbert, R. P., & Vashakmadze, T. S. (2000). A two-dimensional nonlinear theory of anisotropic plates. Mathematical and computer modelling, 32(7-8), 855-875. Google Scholar. https://doi.org/10.1016/S0895-7177(00)00176-X.
Dilmi, M., & Otmani, S. (2023). Existence and asymptotic stability for generalized elasticity equation with variable exponent. Opuscula Mathematica, 43(3), 409-428. Google Scholar. https://doi.org/10.7494/OpMath.2023.43.3.409.
Hale, J. K. (1992). Reaction-diffusion equation on thin domains. J. Math. Pures Appl., 71, 33-95. Google Scholar.
Raugel, G. (1995). Dynamics of partial differential equations on thin domains in Dynamical systems (Montecatini Terme, 1994), 208-315. Lecture Notes in Math, 1609. Google Scholar.
Dilmi, M., & Dilmi, M. (2025). EXISTENCE, UNIQUENESS AND ASYMPTOTIC ANALYSIS FOR A BOUNDARY VALUE PROBLEM WITH RIEMANN–LIOUVILLE FRACTIONAL DERIVATIVE. Memoirs on Differential Equations and Mathematical Physics, 95, 1-18. Google Scholar.
Ciarlet, P. G. (1997). Mathematical elasticity. Theory of plates, vol. II. Studies in Mathematics and its Applications, 27. Google Scholar. View.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Applied Mathematics and Simulation

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
