DOI:
https://doi.org/10.69717/ijams.v2.i2.147Keywords:
Viscoelastic equation, Blow up, Strong damping, Distributed delayAbstract
In this work, we are concerned with a problem for coupled non-linear viscoelastic wave equation with distributed delay and strong damping and source terms, under suitable conditions we prove the blow up result of
solutions.
Downloads
References
Agre, K., & Rammaha, M. A. (2007). Systems of nonlinear wave equations with damping and source terms. Differential and Integral Equations, 19, 1235–1270. Google Scholar. DOI: 10.57262/die/1356050301
Ball, J. (1977). Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quarterly Journal of Mathematics, 28, 473–486. Google Scholar.
Benaissa, A., Ouchenane, D., & Zennir, Kh. (2012). Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Studies, 19(4), 523–535. Google Scholar.
Berrimi, S., & Messaoudi, S. A. (2006). Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Analysis: Theory, Methods & Applications, 64(10), 2314–2331. Google Scholar. https://doi.org/10.1016/j.na.2005.08.015
Cavalcanti, M. M., Cavalcanti, D., & Ferreira, J. (2001). Existence and uniform decay for a nonlinear viscoelastic equation with strong damping. Mathematical Methods in the Applied Sciences, 24, 1043–1053. Google Scholar. DOI: 10.1002/mma.250.
Cavalcanti, M. M., Cavalcanti, D., Filho, P. J. S., & Soriano, J. A. (2001). Existence and decay rates for viscoelastic problems with nonlinear boundary damping. Differential and Integral Equations, 14, 85–116. Google Scholar. DOI: 10.57262/die/1356123377.
Cazenave, T., & Haraux, A. (1980). Équations d’évolution avec non-linéarité logarithmique. Annales de la Faculté des Sciences de Toulouse. Mathématiques, 5(2/1), 21–51. Google Scholar.
Georgiev, V., & Todorova, G. (1994). Existence of a solution of the wave equation with nonlinear damping and source term. Journal of Differential Equations, 109, 295–308. Google Scholar. https://doi.org/10.1006/jdeq.1994.1051.
Kafini, M., & Messaoudi, S. A. (2008). A blow-up result in a Cauchy viscoelastic problem. Applied Mathematics Letters, 21, 549–553. Google Scholar. https://doi.org/10.1016/j.aml.2007.07.004
Liang, G., Zhaoqin, Y., & Guonguang, L. (2015). Blow up and global existence for a nonlinear viscoelastic wave equation with strong damping and nonlinear damping and source terms. Applied Mathematics, 6, 806–816. Google Scholar. http://dx.doi.org/10.4236/am.2015.65076
Messaoudi, S. A. (2006). Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. Journal of Mathematical Analysis and Applications, 320, 902–915. Google Scholar. https://doi.org/10.1016/j.jmaa.2005.07.022
Nicaise, S., & Pignotti, C. (2008). Stabilization of the wave equation with boundary or internal distributed delay. Differential and Integral Equations, 21(9–10), 935–958. Google Scholar. DOI: 10.57262/die/1356038593
Ouchenane, D., Zennir, Kh., & Bayoud, M. (2013). Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms. Ukrainian Mathematical Journal, 65(7), 723–739. Google Scholar. https://doi.org/10.1007/s11253-013-0809-3
Song, H. T., & Xue, D. S. (2014). Blow up in a nonlinear viscoelastic wave equation with strong damping. Nonlinear Analysis, 109, 245–251. Google Scholar. https://doi.org/10.1016/j.na.2014.06.012.
Song, H. T., & Zhong, C. K. (2010). Blow-up of solutions of a nonlinear viscoelastic wave equation. Nonlinear Analysis: Real World Applications, 11, 3877–3883. Google Scholar. https://doi.org/10.1016/j.nonrwa.2010.02.015.
Zennir, Kh. (2013). Exponential growth of solutions with Lp -norm of a nonlinear viscoelastic hyperbolic equation. Journal of Nonlinear Science & Applications, 6, 252–262. Google Scholar.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Applied Mathematics and Simulation

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
