DOI:
https://doi.org/10.69717/ijams.v2.i2.142Keywords:
Nonlinear elliptic equations, Leray-Lions operator, Variable exponents, Weak solution, Variational methods, Irregular DataAbstract
This work investigates a class of nonlinear elliptic problems posed on a bounded domain Ω ⊆ RN (N ≥ 2), described by the partial differential equation -div (H(x, ∇Z)) = F, where H is an operator of Leray-Lions type acting from the space W 1,α(·) 0 (A) into its dual.
When the right-hand side F belongs to Lθ(·)(A), with θ(·) > 1 satisfying certain conditions, we prove the existence of weak solutions for this class of problems under α(·)-growth conditions. Our approach is based on a combination of variational methods, approximation techniques, and compactness arguments. The functional framework involves Sobolev spaces with variable exponents, W 1,α(·) 0 (A), as well as Lebesgue spaces with variable exponents, Lα(·)(A).
Downloads
References
Abdelaziz, H. (2023). Singular Elliptic Equations with Variable Exponents. International Journal of Mathematics And Its Applications, 11(4), 141-168. Google Scholar. View
.
LOUMI, R. A., ABDELAZIZ, H., & Mecheter, R. (2025). Neumann Multi Phase Problems in Anisotropic Musielak-Orlicz-Sobolev spaces. Google Scholar. https://doi.org/10.5269/bspm.64397
Abdelaziz, H., & Mokhtari, F. (2022). Nonlinear anisotropic degenerate parabolic equations with variable exponents and irregular data. Journal of Elliptic and Parabolic Equations, 8(1), 513-532. Google Scholar. https://doi.org/10.1007/s41808-022-00161-0.
Boccardo, I., & Gallouët, T. (1992). Nonlinear elliptic equations with right hand side measures. Communications in Partial Differential Equations, 17(3-4), 189-258. Google Scholar. https://doi.org/10.1080/03605309208820857.
Chen, Y., Levine, S., & Rao, M. (2006). Variable exponent, linear growth functionals in image restoration. SIAM journal on Applied Mathematics, 66(4), 1383-1406. Google Scholar. https://doi.org/10.1137/050624522.
Diening, L., Harjulehto, P., Hästö, P., & Ruzicka, M. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer. Google Scholar. View.
Edmunds, D., & Rákosník, J. (2000). Sobolev embeddings with variable exponent. Studia Mathematica, 143, 267-293. Google Scholar. DOI: 10.4064/sm-143-3-267-293.
X. L. Fan and D. Zhao. (2001), On the spaces Lp(x)(U), and W m,p(x)(U). J. Math. Anal. Appl. 263 424-446. doi:10.1006 jmaa.2000.7617
Lions, J. L. (1969). " Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires,''. Dunod. Google Scholar.
Mokhtari, F., Bachouche, K., & Abdelaziz, H. (2015). Nonlinear elliptic equations with variable exponents and measure or Lm data. J. Math. Sci, 35, 73-101. Google Scholar. http://dx.doi.org/10.18642/jmsaa_7100121550.
Rajagopal, K. R., & Ruzicka, M. (2001). Mathematical modeling of electrorheological materials. Continuum mechanics and thermodynamics, 13(1), 59-78. Google Scholar. https://doi.org/10.1007/s001610100034.
Ruzicka, M. (2007). Electrorheological fluids: modeling and mathematical theory. Springer. Google Scholar. View
Michael. Struwe. Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer. Google Scholar. https://doi.org/10.1007/978-3-540-74013-1.
Zhikov, V. V. (2006). Density of smooth functions in Sobolev-Orlicz spaces. Journal of Mathematical Sciences, 132(3), 285-294. Google Scholar. https://doi.org/10.1007/s10958-005-0497-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Applied Mathematics and Simulation

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
