logo

Authors

NOUREDDINE DECHOUCHA Author

DOI:

https://doi.org/10.69717/ijams.v2.i2.142

Keywords:

Nonlinear elliptic equations, Leray-Lions operator, Variable exponents, Weak solution, Variational methods, Irregular Data

Abstract

This work investigates a class of nonlinear elliptic problems posed on a bounded domain Ω RN (N 2), described by the partial differential equation -div (H(x, Z)) = F, where H is an operator of Leray-Lions type acting from the space W 1,α(·) 0 (A) into its dual.

When the right-hand side F belongs to Lθ(·)(A), with θ(·) > 1 satisfying certain conditions, we prove the existence of weak solutions for this class of problems under α(·)-growth conditions. Our approach is based on a combination of variational methods, approximation techniques, and compactness arguments. The functional framework involves Sobolev spaces with variable exponents, W 1,α(·) 0 (A), as well as Lebesgue spaces with variable exponents, Lα(·)(A). 

Downloads

Download data is not yet available.

Author Biographies

  • ABDELAZIZ HELLAL

    Postal address Laboratory of Functional Analysis and Geometry of Spaces, Department of Math-

    ematics, University of M’sila, University Pole, Road Bordj Bou Arreridj, M’sila 28000, Algeria.

  • NOUREDDINE DECHOUCHA

    Laboratory of Functional Analysis and Geometry of Spaces, Department of Math-

    ematics, University of M’sila, University Pole, Road Bordj Bou Arreridj, M’sila 28000, Algeria.

References

Abdelaziz, H. (2023). Singular Elliptic Equations with Variable Exponents. International Journal of Mathematics And Its Applications, 11(4), 141-168.‏ Google Scholar. View

.

LOUMI, R. A., ABDELAZIZ, H., & Mecheter, R. (2025). Neumann Multi Phase Problems in Anisotropic Musielak-Orlicz-Sobolev spaces.‏ Google Scholar. https://doi.org/10.5269/bspm.64397

Abdelaziz, H., & Mokhtari, F. (2022). Nonlinear anisotropic degenerate parabolic equations with variable exponents and irregular data. Journal of Elliptic and Parabolic Equations, 8(1), 513-532. Google Scholar. https://doi.org/10.1007/s41808-022-00161-0.

Boccardo, I., & Gallouët, T. (1992). Nonlinear elliptic equations with right hand side measures. Communications in Partial Differential Equations, 17(3-4), 189-258.‏ Google Scholar. https://doi.org/10.1080/03605309208820857.

Chen, Y., Levine, S., & Rao, M. (2006). Variable exponent, linear growth functionals in image restoration. SIAM journal on Applied Mathematics, 66(4), 1383-1406.‏ Google Scholar. https://doi.org/10.1137/050624522.

Diening, L., Harjulehto, P., Hästö, P., & Ruzicka, M. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer.‏ Google Scholar. View.

Edmunds, D., & Rákosník, J. (2000). Sobolev embeddings with variable exponent. Studia Mathematica, 143, 267-293.‏ Google Scholar. DOI: 10.4064/sm-143-3-267-293.

X. L. Fan and D. Zhao. (2001), On the spaces Lp(x)(U), and W m,p(x)(U). J. Math. Anal. Appl. 263 424-446. doi:10.1006 jmaa.2000.7617

Lions, J. L. (1969). " Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires,''. Dunod.‏ Google Scholar.

Mokhtari, F., Bachouche, K., & Abdelaziz, H. (2015). Nonlinear elliptic equations with variable exponents and measure or Lm data. J. Math. Sci, 35, 73-101.‏ Google Scholar. http://dx.doi.org/10.18642/jmsaa_7100121550.

Rajagopal, K. R., & Ruzicka, M. (2001). Mathematical modeling of electrorheological materials. Continuum mechanics and thermodynamics, 13(1), 59-78. Google Scholar. https://doi.org/10.1007/s001610100034.

Ruzicka, M. (2007). Electrorheological fluids: modeling and mathematical theory. Springer.‏ Google Scholar. View

Michael. Struwe. Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer.‏ Google Scholar. https://doi.org/10.1007/978-3-540-74013-1.

Zhikov, V. V. (2006). Density of smooth functions in Sobolev-Orlicz spaces. Journal of Mathematical Sciences, 132(3), 285-294.‏ Google Scholar. https://doi.org/10.1007/s10958-005-0497-0

Downloads

Published

2025-11-18

How to Cite

Weak Solutions to Leray-Lions Type Elliptic Equations with Variable Exponents. (2025). International Journal of Applied Mathematics and Simulation, 2(2), 01-12. https://doi.org/10.69717/ijams.v2.i2.142