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A B S T R A C T   K E Y W O R D S  

Due to their effectiveness in separation and purification, two-phase flow columns (liquid-liquid, gas-liquid, and solid-

liquid) are extensively utilized in the chemical industries. PBE has recently been recognized as an appropriate tool for 

modeling this kind of column owing to its ability to describe both the hydrodynamics and the mass transfer of the 

dispersed phase. In this work, we solved analytically one-dimensional PBE at steady-state using the Adomian 

decomposition method and the Method of moments. Analytical solutions are provided for pure growth, pure breakup, 

breakup with growth, pure aggregation, and breakup with growth with aggregation. The obtained results encourage 

extending the applicability of both methods to solve 1D PBE. 
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1 Introduction 

Mass and heat transfer improvement is one of the most intriguing features of 

dispersed phase systems. This system consists of two phases, continuous and dispersed, the 

latter is a set of particles (crystals, droplets, bubbles, cells, ...), its properties are subjected to 

change due to several phenomena: breakup, aggregation and growth. The population 

balance equation describes these processes and particle movement in the physical space. 

Since the PBE was used efficiently for modeling many processes of crystallization, 

absorption, extraction, granulation and polymerization, it became indispensable to 

modelling the dispersed phase systems [1]. 

 The population balance equation is classified as a partial integro-differential 

equation. It shows difficulties in finding its exact solution. However, the researchers found 

some exact solutions just for a few simple cases, and comprehensive propositions and 

development of numerical methods have been made to find approximated solutions [2]. 

The well-known numerical methods can be regrouped under these three families: methods 

of moments, stochastic methods and class methods. Articles are concerned with methods 

for solving the PBE [3-6]. 

In recent years, semi-analytical methods find diverse applications in engineering 

because of their advantages: simplicity in programming and eliminating those 

complications of the calculations produced by the discretization in the numerical methods 

[7, 8]. Math software development also has directly contributed to using these methods 

extensively. Adomian Decomposition Method, Perturbation Homotopic Method, 

Variational Iteration Method and successive generation method, four semi-analytical 

methods have been applied to solve the population balance equations for a batch reactor, 

continuous reactor and columns [9-13]. 

The analytical solutions are undoubtedly needed to test the accuracy of the 

numerical methods. The population balance equation without convective term has a 

limited set of exact solutions [14-22]. Its solutions in moments and particle number 

distributions are routinely compared with the numerical solutions in hundreds of scientific 

papers. One-dimensional PBE is rarely has analytical solutions. However, in [9], analytical 

and semi-analytical solutions were provided by assuming that the particle velocity is 

uniform. Analytical solutions are given using the successive generation method for pure 

convection and convection with particle absorption. Semi-analytical solutions are 

developed using the method of characteristics for a more realistic case, that is, convection 

with particle absorption and breakage. In [3] they also assumed uniform particle velocity 

and applied the chain rule with Laplace transform to find the exact solutions for convection 

with breakup and convection with aggregation. They also developed an integrated solution 

for pure convection, which can model different forms of feed distribution and particle 

velocity. The last idea was extended by applying the variational iteration method to find 

other analytical solutions for a constant particle velocity for different processes: pure 

growth, pure breakage, pure coalescence, breakage with growth, coalescence with growth 

and breakage with coalescence [23]. They also solved the PBE analytically for a volume-

dependent particle velocity for pure breakage and pure coalescence [23] [24], they 

introduced an analytical methodology based on the Laplace transformation and the 

Adomian Decomposition Method to solve the one-dimensional population balance 

equation. 

 This study aims to provide analytical solutions of nondynamic PBE with the 

presence of the advection in the physical space and particle–particle interactions. Adomian 

Decomposition Method and method of moments are applied separately for simple and 

combined problems. 

2 Steady-state 1-D population balance equation  

Considering the presence of breakup, aggregation, growth, and transport events, the 

population balance equation can describe the steady-state behavior of the dispersed phase 

along the column height 𝑧  [1]:   
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𝜕

𝜕𝑧
(𝑣𝑑(𝑧, 𝑣)𝑛(𝑧, 𝑣)) =

𝜕

𝜕𝑧
𝐷𝑑(𝑧)

𝜕

𝜕𝑧
𝑛(𝑧, 𝑣) +

𝑄𝑑

𝐴
𝑛𝑖𝑛(𝑣)𝛿(𝑧 − 𝑧𝑑) + 𝐻𝑎(𝑧, 𝑣) + 𝐻𝑏(𝑧, 𝑣) + 𝐻𝑔(𝑧, 𝑣)                               (1) 

The left-hand side of the above equation is well-known as a convection-diffusion term. The particle movements inside the column are characterized by particle velocity 𝑣𝑑 and 

dispersion coefficient 𝐷𝑑. In the following, we will define all terms in the right hand of the equation (1): 

The dispersed phase feeds the column with an inflow distribution 𝑛𝑖𝑛 and a flow rate 𝑄𝑑 at the level 𝑧𝑑, this source point is modeled by [25]: 

                                                                                                                                                               
𝑄𝑑

𝐴
𝑛𝑖𝑛(𝑣)𝛿(𝑧 − 𝑧𝑑)                                                                                                                            (2) 

where: 𝛿(), 𝐴 :is the Dirac-delta function and the cross-sectional column area, respectively. 

2.1 Breakup term 

The breakup process is expressed as follows: 

                                                                                                         𝐻𝑏(𝑧, 𝑣) = ∫  
∞

𝑣
𝛽(𝑢, 𝑣)𝑔(𝑧, 𝑢)𝑛(𝑧, 𝑢)𝑑𝑢 − 𝑔(𝑧, 𝑣)𝑛(𝑧, 𝑣)                                                                                                                   (3) 

It consists of two nonlinear terms birth and death. The birth term is given by an integral from 𝑣 to ∞, which considers the breakup of the particles has a volume 𝑢, 𝑢 ≥ 𝑣. The death 

term is a negative function; it is a production of the daughter particles from the mother particle that has a volume 𝑣. 𝑔(𝑧, 𝑣) is the breakup frequency and 𝛽(𝑢, 𝑣) is the particle daughter 

particle distribution. 

2.2 Aggregation term 

Modeling the aggregation is far more complicated than modeling the breakup. However, it can be written as: 

                                                      𝐻𝑎(𝑧, 𝑣) =
1

2
∫  
𝑣

0
 𝜔(𝑧, 𝑣 − 𝑢, 𝑢)𝑛(𝑧, 𝑣 − 𝑢)𝑛(𝑧, 𝑢)𝑑𝑢 − 𝑛(𝑧, 𝑣)∫  

∞

𝑣
 𝜔(𝑧, 𝑣, 𝑢)𝑛(𝑧, 𝑢)𝑑𝑢                                                                              (4) 

These two terms on the right-hand side of this equation represent the generation and the loss attributed to the aggregation, respectively. Where 𝜔(𝑧, 𝑣, 𝑢) is the aggregation rate. 

2.3 Growth term 

The growth phenomenon is described by this derivative:  

                                                                                                                                       𝐻𝑔(𝑧, 𝑣) = −
𝜕(𝐺(𝑧,𝑣)𝑛(𝑧,𝑣))

𝜕𝑣
                                                                                                                                                               (5) 

where, 𝐺(𝑧, 𝑣) is the growth rate. We can rewrite the equation (1) as [3]: 

                                                                             
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑣)) =

𝜕

𝜕𝑥
𝐷𝑑(𝑥)

𝜕

𝜕𝑥
𝑛(𝑥, 𝑣) + 𝐻𝑎(𝑥, 𝑣) + 𝐻𝑏(𝑥, 𝑣) + 𝐻𝑔(𝑥, 𝑣)                                                                                                 (6) 

where 𝑥 = 𝑧 − 𝑧𝑑 and the boundary condition is given by:  

                                                                                                                                               𝑛(0, 𝑣) =
𝑄𝑑

𝐴
𝑛𝑖𝑛                                                                                                                                                                               (7) 

3 Adomian decomposition method 

Adomian decomposition was developed by George Adomian, it is a widely used 

analytical approach for solving algebraic, differential, integral, and integro-differential 

equations by formulating the solution as an infinite power series that converges to the exact 

solution [26, 27]. This method has various applications to solve the population balance 

equation [11, 12]. 

4 Application 

In this application, we proposed five problems: pure growth, pure breakup, pure 

aggregation, simultaneous breakup with growth and a combination between three 

processes growth, breakup and aggregation. We applied the Adomian decomposition 

method for a pure breakup, pure aggregation and simultaneous breakup with growth. For 

the last problem, we used the method of the moments due to its complexity in solving. The 

diffusion term is neglected, and all the variables are dimensionless in all these problems. 

Except for pure growth, we tried to consider the agitation effects of the rotor on the 

dispersed phase. Since the system is non-homogeneous, we can consider the rate of any 

process as a function of the height 𝑧. So, we choose an exponential function; it is, 𝑘𝑧𝑎, 

where 𝑘 and 𝑎 are constants and ≥ 0. We consider a two-phase column with the following 

dimensions: 𝐴 = 1, 𝑧𝑑 = 0.25, ℎ = 2.7. Applications in details are provided in the 

following sections: 

4.1 Pure growth 

In this specific problem, we assume that the particles only undergo growth and that 

the growth rate depends on the particle's volume 𝐺(𝑧, 𝑣) = 𝑘𝑔𝑣, where 𝑘𝑔 is a constant 

and 𝑘𝑔 ≥ 0. As a result of the mass transfer, the dispersed phase grows whenever it 

absorbs components from the continuous phase. The particles rise with a linear particle 

velocity that varies with particle size: 

                                       𝑣𝑑(𝑧, 𝑣) = (𝑘𝑑 + 𝑘𝑣𝑑)                                                                      (8) 

where 𝑑 is the particle diameter 𝑑 = √𝑣/𝑐𝑣
3 , 𝑐𝑣 is the form factor, the particle might be 

spherical 𝑐𝑣 = 𝜋/6 or cubic 𝑐𝑣 = 1. The particle velocity is also adjusted by two 

parameters which must investigate the following conditions: 

                                          𝑘𝑑 > 0, 𝑘𝑣 > 0, constants                                                            (9) 

The proposed formula of the particle velocity can overcome the retention of the 

small particles in the column. 
For only growth, PBE should be written as: 

                                 
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑑)) = −

𝜕(𝐺(𝑥,𝑣)𝑛(𝑥,𝑣))

𝜕𝑣
                              (10) 

This equation is solved analytically, the exact solution in both internal and external 

coordinates for any feed distribution 𝑛𝑖𝑛, is given by: 

                                        𝑛(𝑥, 𝑣) =
𝑄𝑑𝑘(𝑥,𝑣)

𝐴𝑣
𝑛𝑖𝑛(𝑘(𝑥, 𝑣))                                       (11) 

The function 𝑘(𝑧, 𝑣) has the following formula: 

  𝑘(𝑥, 𝑣) = 𝑐𝑣 (
𝑘𝑑

𝑘𝑣
)
3

ProductLog [(
𝑣

𝑐𝑣
(
𝑘𝑣

𝑘𝑑
)
3

𝑒
3𝑘𝑣𝑣

1/3𝑐𝑣
−1/3

−𝑘𝑔𝑥

𝑘𝑑 )

1/3

]

3

     (12) 

where: ProductLog is the product logarithm function, also called the Lambert W 

function.  

If we replace 𝑥 by 𝑧 − 𝑧𝑑 in the above solution we get: 

                           𝑛(𝑧, 𝑣) = {
0, 𝑧 < 𝑧𝑑

𝑄𝑑𝑘(𝑧−𝑧𝑑,𝑣)

𝐴𝑣
𝑛𝑖𝑛(𝑘(𝑧 − 𝑧𝑑, 𝑣)), otherwise 

                        (13) 

For 𝑘𝑔 = 0, the above solution provides a solution for pure convection at steady 

state. The same solution can be derived from the dynamic convection solution of  [9].  
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In Figure 1 we investigated the impact of the parameter 𝑘𝑣 on the growth process. 

It represents analytical distributions at the column output for various experiments: the first 

experiment 𝑘𝑣 = 1, the second experiment 𝑘𝑣 = 2, the third experiment 𝑘𝑣 = 3. They 

were done with 𝑄𝑑 = 0.15, 𝐴 = 1, 𝑐𝑣 = 𝜋/6, 𝑘𝑑 = 0.15.  

The inflow distribution for this case is taken as follows: 

                                                            𝑛𝑖𝑛 = 𝑒−𝑣                                                               (14) 

The Figure 1 is shown that the distribution shape is distinct for each test, and the 

effect of the velocity appears very clear. These tests demonstrate that the mean volume of 

particles increases, and the total number of the leaving particles is reduced much with the 

largest value of 𝑘𝑣, the mass transfer takes place more efficiently when the particles move 

slowly. 

4.2 Pure aggregation 

The second problem is that under these conditions, the particles only aggregate at 

a rate proportional to the volume of the particles and the height of the column, 𝜔(𝑣, 𝑢) =

𝑘𝑐𝑧
𝑎𝑣𝑢. The upward movement of particles is linear and proportional to their volume, 

𝑣𝑑 = 𝑘𝑣𝑣, where 𝑘𝑣 > 0. The inflow distribution is exponential, 𝑛𝑖𝑛 = 𝑒
−𝑣. 

This problem was introduced first by  [23], where they considered 𝑘𝑐 = 1, 𝑎 =

0 and 𝑘𝑣 = 1. For convection with aggregation, equation (6) is reduced to: 

 

Fig.1. Effect of the velocity coefficient 𝑘𝑣 on the particle number 

density function at the column outlet. 

                                                            
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑑)) =

1

2
∫  
𝑣

0
 𝜔(𝑥, 𝑣 − 𝑢, 𝑢)𝑛(𝑥, 𝑣 − 𝑢)𝑛(𝑥, 𝑢)𝑑𝑢 − 𝑛(𝑥, 𝑣) ∫  

∞

𝑣
 𝜔(𝑥, 𝑣, 𝑢)𝑛(𝑥, 𝑢)𝑑𝑢                                                         (15) 

By applying ADM to the above equation, that leads: 

                                               𝑛𝑖+1(𝑥, 𝑣) =
1

𝑣𝑑(𝑣)
∫  
𝑥

0
 
1

2
∫  
𝑣

0
 𝜔(𝑥, 𝑣 − 𝑢, 𝑢)𝑛𝑖(𝑥, 𝑣 − 𝑢)𝑛𝑖(𝑥, 𝑢)𝑑𝑢𝑑𝑥 −

1

𝑣𝑑(𝑣)
∫  
𝑥

0
 𝑛𝑖(𝑥, 𝑣) ∫  

∞

𝑣
 𝜔(𝑥, 𝑣, 𝑢)𝑛𝑖(𝑥, 𝑢)𝑑𝑢𝑑𝑥                                  (16) 

We have the following component solutions: 

                                                                                                                                                        𝑛0 =
𝑄𝑑

𝐴
𝑒−𝑣                                                                                                                                                                          (17) 

                                                                                                                                          𝑛1 =
𝑒−𝑣𝑘𝑐𝑄𝑑

2(−12+𝑣2)𝑥1+𝑎

12(1+𝑎)𝐴2𝑘𝑣
                                                                                                                                                             (18) 

                                                                                                                                    𝑛2 =
𝑒−𝑣𝑘𝑐

2𝑄𝑑
3(360−60𝑣2+𝑣4)𝑥2+2𝑎

480(1+𝑎)2𝐴3𝑘𝑣
2                                                                                                                                                     (19) 

These can be simplified as: 

                                                                                                                        𝑛𝑖 = ∑  ∞
𝑖=1

𝑄𝑑
𝑛

𝐴

4(1+𝑎)2𝑘𝑐
𝑖−1𝑘𝑣

2𝑥(𝑖−1)(1+𝑎)𝑣2(−1+𝑖)𝑒−𝑣

 Gamma [2𝑖](2(1+𝑎)𝑘𝑣+𝑘𝐶
𝑄𝑑
𝐴
𝑥1+𝑎)

𝑖+1                                                                                                                                 (20) 

The closed-form solution is: 

                                                                                                                                  𝑛(𝑥, 𝑣) =
4(𝑎+1)2(√𝑥)−𝑎−1𝑒−𝑣√

𝑄𝑑
𝐴
𝑘𝑣
2

√𝑘𝑐𝑣(2(𝑎+1)𝑘𝑣+𝑘𝑐
𝑄𝑑
𝐴
𝑥𝑎+1)

3/2 𝜒                                                                                                                                      (21) 

where 

                                                                                                        𝜒 = Sinh [√
𝑄𝑑

𝐴
𝑘𝑐𝑣(√𝑥)

𝑎+1/√2(𝑎 + 1)𝑘𝑣 + 𝑘𝑐
𝑄𝑑

𝐴
𝑥𝑎+1]                                                                                                                   (22) 

By replacing 𝑥 by 𝑧 − 𝑧𝑑 in the above solution, we get: 

                                                                                                             𝑛(𝑧, 𝑣) =

{
 
 

 
 
0, 𝑧 < 𝑧𝑑
𝑄𝑑

𝐴
𝑒−𝑣, 𝑧 = 𝑧𝑑

4(𝑎+1)2(√𝑧−𝑧𝑑)
−𝑎−1

𝑒−𝑣√
𝑄𝑑
𝐴
𝑘𝑣
2

√𝑘𝑐𝑣(2(𝑎+1)𝑘𝑣+𝑘𝑐
𝑄𝑑
𝐴
𝑥𝑎+1)

3/2 𝜒, 𝑧 > 𝑧𝑑

                                                                                                                               (23) 

where: 

                                                                                            𝜒 = sinh [√
𝑄𝑑

𝐴
𝑘𝑐𝑣(√𝑧 − 𝑧𝑑)

𝑎+1
/√2(𝑎 + 1)𝑘𝑣 + 𝑘𝑐

𝑄𝑑

𝐴
(𝑧 − 𝑧𝑑)

𝑎+1]                                                                                                (24)

The obtained solution was introduced by  [23] for dynamic 1-D PBE. 

We examine the holdup and outflow distribution profiles for different values of the 

exponent 𝑎; considering three test cases: 𝑎 = 0,1.5 and 3, analytical and numerical results 

are shown in Figure 2.  

Figure 2(b) can be seen that the holdup profile is linear for 𝑎 = 0, but it curves out 

for 𝑎 > 0, for 𝑎 > 0, these nonlinear rates become stronger with an increase in base 𝑧; 

their curves can be split into two sections: a weak aggregation section (𝑧 ∈ [𝑧𝑑 , 1.5]) and 

a strong aggregation section (𝑧 ∈ [1.5,2.7]).  

Figure 2(a) it chows that a critical drop in the distribution at the input of the column 

by dropping the 𝑎 value.  

Large-volume particles are produced during the aggregation process when the particle 

velocity depends on the particle volume, giving each particle a short residence time. In 

other words, that decreases the existence of the population in the column. When the value 

of the parameter 𝑎 is increased, there is a corresponding drop in the outflow moments. 
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Fig.2. Effect of the aggregation parameter 𝑎 for pure aggregation. 

4.3 Pure breakup 

During the presence of the particle in the column, the breakup process is active 

with 𝑔(𝑧, 𝑣) = 𝑘𝑏𝑧
𝑎𝑣, 𝛽(𝑢, 𝑣) =

2

𝑢
, and a constant particle velocity, 𝑣𝑑 > 0. We 

consider two particular cases:  

Case 01, the feed distribution the first-order gamma distribution: 

                                                                 𝑛𝑖𝑛 = 𝑣𝑒
−𝑣                                                                 (25) 

Case 02, the feed distribution is a normalized Gaussian distribution with the mean 𝑚 and 

the stadaed diviation 𝑠 : 

                                                            𝑛𝑖𝑛 =
𝑒
−
(𝑣−𝑚)2

2𝑠2

𝐵
, 𝐵 = √2𝜋𝑠                                            (26) 

If the operations inside the column allow the particles undergo only breakup, the model 

looks like: 
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑣)) = ∫  

∞

𝑣
𝛽(𝑢, 𝑣)𝑔(𝑥, 𝑢)𝑛(𝑥, 𝑢)𝑑𝑢 − 𝑔(𝑥, 𝑣)𝑛(𝑥, 𝑣)     (27) 

By applying ADM to the above equation, that leads: 

𝑛𝑖+1(𝑥, 𝑣) =
1

𝑣𝑑
∫  
𝑥

0
∫  
∞

𝑣
𝛽(𝑢, 𝑣)𝑔(𝑥, 𝑢)𝑛𝑖(𝑥, 𝑢)𝑑𝑢 − 𝑔(𝑥, 𝑣)𝑛𝑖(𝑥, 𝑣)𝑑𝑥   (28) 

For the first case, we have the following component solutions: 

                                                 𝑛0 =
𝑄𝑑

𝐴
𝑣𝑒−𝑣                                                                              (29) 

                              𝑛1 = −
𝑒−𝑣𝑘𝑏𝑄𝑑(−2−2𝑣+𝑣

2)𝑥1+𝑎

(1+𝑎)𝐴𝑘𝑣
                                                              (30) 

                              𝑛2 =
𝑒−𝑣𝑘𝑏

2𝑄𝑑(4−2𝑣−4𝑣
2+𝑣3)𝑥2+2𝑎

2(1+𝑎)2𝐴𝑘𝑣
2                                                           (31) 

These can be simplified as:

                                                                                                                   𝑛𝑖 =
𝑒−𝑣𝑄𝑑

𝐴
(𝑣 + ∑  ∞

𝑖=1  
𝑣𝑖−2(2(−1+𝑖)𝑖+(−3𝑖+𝑖2)𝑣−2𝑖𝑣2+𝑣3)

𝑖!(−1)𝑖(1+𝑎)𝑖𝑘𝑣
𝑖𝑘𝑏
−𝑖𝑥−𝑖−𝑖𝑎

)                                                                                             (32) 

The closed-form solution is: 

                                                                                                                      𝑛(𝑥, 𝑣) =
𝑄𝑑(𝑘𝑣+𝑎𝑘𝑣+𝑘𝑏𝑥

1+𝑎)((1+𝑎)𝑘𝑣𝑣+𝑘𝑏(2+𝑣)𝑥
1+𝑎)

𝑒
𝑣(1+

𝑘𝑏𝑥
1+𝑎

𝑘𝑣+𝑎𝑘𝑣
)
(1+𝑎)2𝐴2𝑘𝑣

2

                                                                                                                       (33) 

 

By replacing 𝑥 by 𝑧 − 𝑧𝑑 in the above solution, we get: 

                                                                                        𝑛(𝑧, 𝑣) =

{
 
 

 
 

0, 𝑧 < 𝑧𝑑
𝑄𝑑(𝑘𝑣+𝑎𝑘𝑣+𝑘𝑏(𝑧−𝑧𝑑)

1+𝑎)((1+𝑎)𝑘𝑣𝑣+𝑘𝑏(2+𝑣)(𝑧−𝑧𝑑)
1+𝑎)

𝑒

𝑣(1+
𝑘𝑏(−𝑧𝑑)

1+𝑎

𝑘𝑣+𝑎𝑘𝑣
)

)

 
 

(1+𝑎)2𝐴2𝑘𝑣
2

, otherwise 
                                                                                                   (34) 

For the second case, ADM gives: 

                                                                                                                                                      𝑛0 =
𝑄𝑑

𝐴

𝑒
−
(𝑣−𝑚)2

2𝑠2

𝐵
                                                                                                                                                                     (35) 

                                                                                                     𝑛1 =
𝑄𝑑

𝐴

𝑘𝑏𝑥
(1+𝑎)

𝐵(1+𝑎)𝑘𝑣
(−𝑣𝑒

−
(𝑚−𝑣)2

2𝑠2 + √2𝜋𝑠 (1 + Erf [
𝑚−𝑣

√2𝑠
]))                                                                                                                        (16) 

                                                                                                                                  𝑛2 =
𝑄𝑑

𝐴

𝑘𝑏
2𝑥2(1+𝑎)

2𝐵(1+𝑎)2𝑘𝑣
2((2𝑠

2 + 𝑣2)𝑒
−
(𝑚−𝑣)2

2𝑠2 +⋯)                                                                                                                                       (37) 

These can be simplified, to be: 

                                                                                                                         
𝑛𝑖  =

𝑄𝑑

𝐵𝐴

𝑒
−
(𝑚−𝑣)2

2𝑠2 (𝑘𝑣−𝑘𝑏𝑣𝑥)+𝑘𝑏√2𝜋𝑠𝑥(1+Erf[
𝑚−𝑣

√2𝑠
])

(1+𝑎)𝑘𝑣

 +
𝑄𝑑

𝐵𝐴
∑  ∞
𝑖=2  

(−1)𝑖𝑘𝑏
𝑖 𝑘𝑣−𝑖𝑣−2+𝑖𝑥𝑖

2Gamma[−1+𝑖](1+𝑎)𝑖
𝜒𝑖

                                                                                                                                 (38) 

where 

                                                                                                  𝜒𝑖 = 2𝑒
−
(𝑚−𝑣)2

2𝑠2 (𝑠2 +
𝑣2

(−1+𝑖)𝑖
)+√2𝜋𝑠 (𝑚 −

(1+𝑖)

−1+𝑖
𝑣) (1 + Erf [

𝑚−𝑣

√2
])

 

                                                                                (39) 

The exact solution is: 

                                                                                                                    𝑛(𝑥, 𝑣) =
𝑄𝑑

2(1+𝑎)2𝐴𝐵𝑘𝑣
2 𝑒

−
(𝑚−𝑣)2

2𝑠2
−
𝑘𝑏𝑣𝑥

1+𝑎

𝑘𝑣(1+𝑎)𝜒(𝑥, 𝑣)                                                                                                                                   (40) 

where 
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𝜒(𝑥, 𝑣) = 2(1 + 𝑎)2𝑘𝑣
2 + 2(1 + 𝑎)𝑒

(𝑚−𝑣)2

2𝑠2 𝑘𝑏𝑘𝑣√2𝜋𝑠𝑥
1+𝑎 + 𝑘𝑏

2𝑠 (2𝑠 + 𝑒
(𝑚−𝑣)2

2𝑠2 √2𝜋(𝑚 − 𝑣)) 𝑥2+2𝑎

 

 +
𝑘𝑏√2𝜋𝑠

𝑒
−
(𝑚−𝑣)2

2𝑠2

𝑥1+𝑎(2(1 + 𝑎)𝑘𝑣 + 𝑘𝑏(𝑚 − 𝑣)𝑥1+𝑎)Erf [
𝑚−𝑣

√2𝑠
]

                                                           (41) 

By replacing 𝑥 by 𝑧 − 𝑧𝑑 in the above solution, we get: 

                                                                                                𝑛(𝑧, 𝑣) = {

0, 𝑧 < 𝑧𝑑

𝑄𝑑

2(1+𝑎)2𝐴𝐵𝑘𝑣
2 𝑒

−
(𝑚−𝑣)2

2𝑠2
−
𝑘𝑏𝑣(𝑧−𝑧𝑑)

1+𝑎

𝑘𝑣(1+𝑎) 𝜒(𝑧, 𝑣), otherwise 
                                                                                                                 (42) 

where 

                                 

𝜒(𝑧, 𝑣) = 2(1 + 𝑎)2𝑘𝑣
2 + 2(1 + 𝑎)𝑒

(𝑚−𝑣)2

2𝑠2 𝑘𝑏𝑘𝑣√2𝜋𝑠(𝑧 − 𝑧𝑑)
1+𝑎 + 𝑘𝑏

2𝑠 (2𝑠 + 𝑒
(𝑚−𝑣)2

2𝑠2 √2𝜋(𝑚 − 𝑣)) (𝑧 − 𝑧𝑑)
2+2𝑎

 

 +
𝑘𝑏√2𝜋𝑠

𝑒
−
(𝑚−𝑣)2

2𝑠2

(2(1+𝑎)𝑘𝑣+𝑘𝑏(𝑚−𝑣)(𝑧−𝑧𝑑)
1+𝑎)

(𝑧−𝑧𝑑)
−1−𝑎

Erf [
𝑚−𝑣

√2𝑠
]

                                                       (43) 

Table 1. Summary of the test case simultaneous growth and breakup. 

𝒏𝒊𝒏(𝒗) 𝒈(𝒛,𝒗) 𝚪(𝒗,𝒖) 𝑮(𝒛,𝒗) 𝒗𝒅(𝒛, 𝒗) 

𝑣𝑒−𝑣 𝑘𝑏𝑣𝑧
𝑎 2/𝑢 𝑘𝑔𝑣𝑧

𝑎 where 𝑘𝑔 = 𝑘𝑏 𝑘𝑣 , 𝑘𝑣 > 0 

The analytical solution is usually derived from the feed distribution.  

Figure 3 shows input and output distributions for case 01 and 02. We select the following set of parameters to achieve this graphical representation: 𝑄𝑑 = 0.1, 𝑘𝑣 = 1, 𝑘𝑏 =

0.1, 𝑎 = 0. In the second case, the parameters 𝑚 and 𝑠 are 2,0.7, respectively. This figure demonstrates that when particles break up, the average particle volume decreases while the total 

number of particles reaches. 

 

Fig.3. Comparison of input and output particle number density functions for two different feed distributions in the case of pure breakage. 

4.4 Growth with breakup 

We combined here growth with breakup processes. The table 1 presents the essential information, including breakup frequency daughter particle distribution growth rate particle 

velocity and feed distribution. 

The governing equation for the considering problem is: 

                                                                        
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑣)) = ∫  

∞

𝑣
 𝛽(𝑢, 𝑣)𝑔(𝑥, 𝑢)𝑛(𝑥, 𝑢)𝑑𝑢 − 𝑔(𝑥, 𝑣)𝑛(𝑥, 𝑣) −

𝜕(𝐺(𝑥,𝑣)𝑛(𝑥,𝑣))

𝜕𝑣

 
                                                                                (44) 

By ADM, we found this general form: 

                                                                      
𝑛𝑖+1(𝑥, 𝑣) =

1

𝑣𝑑
∫  
𝑥

0
 ∫  
∞

𝑣
 𝛽(𝑢, 𝑣)𝑔(𝑥, 𝑢)𝑛𝑖(𝑥, 𝑢)𝑑𝑢 − 𝑔(𝑥, 𝑣)𝑛𝑖(𝑥, 𝑣)𝑑𝑥 −

1

𝑣𝑑
∫  
𝑥

0
 
𝜕(𝐺(𝑥,𝑣)𝑛𝑖(𝑥,𝑣))

𝜕𝑣
𝑑𝑥

 
                                                         (45) 

ADM gives: 

                                                                                                                                                      𝑛0 =
𝑄𝑑

𝐴
𝑣𝑒−𝑣                                                                                                                                                                         (46) 

                                                                                                                                                                           𝑛1 =
2𝑘𝑏𝑥

1+𝑎

𝑘𝑣(1+𝑎)

𝑄𝑑

𝐴
𝑒−𝑣                                                                                                                                                                   (47) 

                                                                                                                                               𝑛2 =
2𝑘𝑏

2𝑥2+2𝑎

𝑘𝑣
2(1+𝑎)2

𝑄𝑑

𝐴
𝑒−𝑣                                                                                                                                                                  (48) 

These can be simplified, to be: 

                                                                                                                  𝑛𝑖 =
𝑄𝑑𝑒

−𝑣

𝐴
(𝑣 + ∑  ∞

𝑖=1  
𝑘𝑏
𝑖 𝑥𝑖+𝑖𝑎

1

2
 Pochhammer [1,𝑛](1+𝑎)𝑖𝑘𝑣

𝑖)                                                                                                                                     (49) 

 

The exact solution is: 
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                                                                                                                         𝑛(𝑥, 𝑣) =
𝑒−𝑣𝑄𝑑

𝐴
(−2 + 2𝑒

𝑘𝑘𝑥
1+𝑎

𝑘𝑣(1+𝑎) + 𝑣)                                                                                                                                              (50) 

By replacing 𝑥 by 𝑧 − 𝑧𝑑 in the above solution, we have: 

                                                                                                         𝑛(𝑧, 𝑣) = {

0, 𝑧 < 𝑧𝑑

𝑒−𝑣𝑄𝑑

𝐴
(−2 + 2𝑒

𝑘𝑏(𝑧−𝑧𝑑)
1+𝑎

𝑘𝑣(1+𝑎) + 𝑣) , otherwise 
                                                                                                                       (51) 

The entering mass of the dispersed phase depends on dispersed flow rate, inlet distribution and cross-sectional column area. The distribution function is presented in the Figure 4, We 

fixed all the parameters ( 𝑘𝑣 = 1, 𝑘𝑏 = 𝑘𝑔 = 0.2, 𝑎 = 0 ) and varied the value of the dispersed flow rate. 

 We can deduce from this figure the greatest 𝑄𝑑 value produces the greatest values of 𝜇1, and the dispersed flow rate influences the total mass of the dispersed phase along the 

column, that was presented experimentally for a liquid-liquid column [28]. 

 

Fig.4. Effect of the dispersed phase flow rate on the holdup of the dispersed phase for the case of simultaneous growth and breakup. 

4.5 Simultaneous growth and aggregation and breakup 

A combination of three processes is made in this section. This problem creates more difficulties in getting its exact solution from the solution series that ADM computes. Alternatively, 

we applied the method of moments that allows getting the moments of the number density function directly without conserving the shape of the distribution. The details (breakup and 

aggregation frequencies, growth rate particle velocity and feed distribution) are summarized in table 2. 

Table 2. Summary of the test case simultaneous growth and breakup. 

𝝎(𝒛, 𝒗,𝒖) 𝒈(𝒛,𝒗) 𝚪(𝒗,𝒖) 𝑮(𝒛, 𝒗) 𝒗𝒅(𝒛, 𝒗) 

𝑘𝑐 𝑘𝑏 2/𝑢 𝑘𝑔𝑣 𝑘𝑣 , 𝑘𝑣𝜇1, 𝑘𝑣 > 0 

 

PBE, when without including the diffusive term, is expressed as: 

                                                                                                              
𝜕

𝜕𝑥
(𝑣𝑑(𝑥, 𝑣)𝑛(𝑥, 𝑣)) = 𝐻𝑎(𝑥, 𝑣) + 𝐻𝑏(𝑥, 𝑣) + 𝐻𝑔(𝑥, 𝑣)                                                                                                                (52) 

The moments transformation is given by [29]: 

                                                                                                                                            𝜇𝑗(𝑥) = ∫  
∞

0
 𝑣𝑗(𝑥, 𝑣)𝑑𝑣                                                                                                                                   (53) 

The moments of the particle size distribution provide compact quantitative measures of the dispersed phase evolution. The zeroth moment tracks the total number of particles, while 

the first moment corresponds to the total dispersed volume, allowing direct assessment of mass conservation or loss due to breakup and aggregation. 

By applying MOM to each term of the above equation, we have [1, 21]: 

                                                                                                                         ∫  
∞

0
 𝑣𝑗

𝜕

𝜕𝑥
(𝑣𝑑(𝑥)𝑛(𝑥, 𝑣))𝑑𝑣 =

𝜕

𝜕𝑥
(𝑘𝑣𝜇𝑗(𝑥))                                                                                                           (54) 

                                                                                                                                     ∫  
∞

0
 𝑘𝑏𝑛(𝑥, 𝑣)𝑣

𝑗𝑑𝑣 = 𝑘𝑏𝜇𝑗(𝑥)                                                                                                                                                   (55)   

                                                                                                                                                   ∫  
∞

0
 𝑣𝑗 ∫  

∞

𝑣
  𝑘𝑏

2

𝑢
𝑛(𝑥, 𝑢)𝑑𝑢𝑑𝑣 = 𝑘𝑏

2𝜇𝑗(𝑥)

𝑗+1
                                                                                                                                       (56)  

                                                                                                                                                        ∫  
∞

0
  𝑣𝑗

𝜕(𝑘𝑔𝑣𝑛(𝑥,𝑣))

𝜕𝑣
𝑑𝑣 = 𝑘𝑔𝑗𝜇𝑗(𝑥)                                                                                                                                                  (57) 

                                                                                                              ∫  
∞

0
 𝑣𝑗𝑛(𝑥, 𝑣) ∫  

∞

𝑣
 𝑘𝑐𝑛(𝑥, 𝑢)𝑑𝑢𝑑𝑣 = 𝑘𝑐𝜇𝑗(𝑥)𝜇0(𝑥)                                                                                                                           (58) 

                                                                                           
1

2
∫  
∞

0
  𝑣𝑗 ∫  

𝑣

0
 𝑘𝑐𝑛(𝑥, 𝑣 − 𝑢)𝑛(𝑥, 𝑢)𝑑𝑢𝑑𝑣 =

𝑘𝑐

2
∑  
𝑗
𝑟=0   (

𝑗
𝑟
)𝜇𝑟(𝑥)𝜇𝑗−𝑟(𝑥)                                                                                                       (59) 
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Finally, we collect all the above moment terms to have the following system of 𝑗 ordinary differential equations: 

                                                       

𝜕

𝜕𝑥
(𝑣𝑑(𝑥)𝜇𝑗(𝑥)) = (1 −

2

𝑗+1
) 𝑘𝑏𝜇𝑗(𝑥) +

𝑘𝑐

2
∑  
𝑗
𝑟=0   (

𝑗
𝑟
)𝜇𝑟(𝑥)𝜇𝑗−𝑟(𝑥) − 𝑘𝑐𝜇𝑗(𝑥)𝜇0(𝑥) − 𝑘𝑔𝑗𝜇𝑗(𝑥)

 
                                                                   (60) 

More details about these mathematical simplifications and MOM applications are provided in [21]. We solved analytically the equation (59) by considering the feed distribution is 

that given by (25), and we proposed two particular cases of the particle velocity: constant 𝑣𝑑(𝑧) = 𝑘𝑣 and nonlinear function 𝑣𝑑(𝑧) = 𝑘𝑣𝜇1(𝑧) 

For 𝑗 = 0,1 and 2, the exact solutions in the original variable 𝑧 are listed as follows: 

Case 01 

In the nonactive zone, 𝑧 < 𝑧𝑑 : 

                                                                                                                                                       𝜇𝑗(𝑧) = 0                                                                                                                                                                                (61) 

In the active zone, 𝑧 ≥ 𝑧𝑑 : 

                                                                                                                                 𝜇0(𝑧) =
2𝑒

𝑘𝑏(𝑧−𝑧𝑑)
𝑘𝑣 𝑘𝑏𝑄𝑑

2𝐴𝑘𝑏+(−1+𝑒

𝑘𝑏(𝑧−𝑧𝑑)
𝑘𝑣 )𝑘𝑐𝑄𝑑

                                                                                                                                                   (62) 

                                                                                                                                                                           𝜇1(𝑧) =
𝑄𝑑

𝐴
𝑒
𝑘𝑔(𝑧−𝑧𝑑)

𝑘𝑣                                                                                                                                                                   (63) 

                                                                                                𝜇2(𝑧) =
𝑄𝑑

𝐴2𝑘𝑏
𝑒
−
(𝑘𝑏−6𝑘𝑔)(𝑧−𝑧𝑑)

3𝑘𝑣 (2𝐴𝑘𝑏 + 3(−1 + 𝑒
𝑘𝑏(𝑧−𝑧𝑑
3𝑘𝑣 )𝑘𝑐𝑄𝑑)                                                                                          (64) 

Case 02 

In the nonactive zone, 𝑧 < 𝑧𝑑 : 

                                                                                                                                                          𝜇𝑗(𝑧) = 0                                                                                                                                                                              (65) 

In the active zone, 𝑧 ≥ 𝑧𝑑 : 

                                                                                                                          𝜇0(𝑧) =
2
1−
2𝑘𝑏
𝑘𝑔 (2𝑘𝑏−𝑘𝑔)𝑘𝑣𝑄𝑑

2(
2𝑘𝑣𝑄𝑑
𝐴

+𝑘𝑔𝑧)

2𝑘𝑏
𝑘𝑔

2𝑘𝑐𝑘𝑣𝑄𝑑
2(
𝑘𝑣𝑄𝑑
𝐴

+
𝑘𝑔𝑧

2
)

2𝑘𝑏
𝑘𝑔 −(

𝑘𝑣𝑄𝑑
𝐴

)

2𝑘𝑏
𝑘𝑔 𝜒

                                                                                                                                         (66) 

where 

                                                                                                                𝜒 = (𝐴(−2𝑘𝑏 + 𝑘𝑔) + 𝑘𝑐𝑄𝑑)(2𝑘𝑣𝑄𝑑 + 𝐴𝑘𝑔𝑧)                                                                                                                                (67) 

The first and the second moments are given by: 

                                                                                                                                              𝜇1(𝑧) =
2𝑘𝑣𝑄𝑑+𝐴𝑘𝑔𝑧

2𝐴𝑘𝑣
                                                                                                                                                                     (68) 

                                                                                                            𝜇2(𝑧) =
(2𝑘𝑣𝑄𝑑+𝐴𝑘𝑔𝑧)

2

4𝐴2(2𝑘𝑏−3𝑘𝑔)𝑘𝑣
3 [6𝑘𝑐𝑘𝑣 + 𝜒(

(
2𝑘𝑣𝑄𝑑
𝐴

)

(
2𝑘𝑣𝑄𝑑
𝐴

+𝑘𝑔𝑧)
)

2𝑘𝑏
3𝑘𝑔

]                                                                                                     (69) 

where 

                                                                                                             𝜒 =
1

𝑄𝑑
2 (2𝐴𝑘𝑏 − 3𝐴𝑘𝑔 − 3𝑘𝑐𝑄𝑑)(2𝑘𝑣𝑄𝑑 + 𝐴𝑘𝑔𝑧)                                                                                                         (70)

 

Fig.5. Spatially evolution of moments of the order 0,1 and 2 for 

simultaneous breakup aggregation and growth processes with two 

cases of the particle velocity. 

    After inserting 𝑄𝑑 = 0.3, 𝐴 = 1, 𝑘𝑣 = 1.5, 𝑘𝑏 = 0.3, 𝑘𝑐 = 0.7 and 

𝑘𝑔 = 0.05, analytical and numerical moments for both velocities are presented in the 

Figure 5. 

The feed point of the dispersed phase and the nonactive zone appear clearly for 

𝑧 ∈ [0, 𝑧𝑑] and 𝑧 = 𝑧𝑑, respectively. All moments are directly proportional to the 

column height. For the first case, the moments in the active zone are similar to those in the 

batch system, but here, 𝑧 is the independent variable instead of the time 𝑡. Comparatively, 

at the output, notable moments are produced by the second model than to the first, it makes 

a difference of 40.2% for 𝜇0, 4.7% for 𝜇1 and 22.6 for 𝜇2. 

5 Conclusion 

This study offers analytical solutions for a one-dimensional PBE model at steady-

state that incorporates the processes of growth, breakup, and aggregation. The 

decomposition method and method of moments are used to solve the PBE analytically, 

ADM is tested for a pure breakup, pure aggregation, and simultaneous breakup with 

growth, and MOM for growth with breakup with aggregation. Successfully, exact 

solutions are found for all problems. 

Since the proposed problems include different processes and different models of 

the particle velocity constant, space-dependent and volume-dependent, this study 

introduces knowledge to comprehend the dispersed phase behavior in the two-phase 

columns. In order to offer an analytical solution, ADM is an effective approach for solving 

the PBE. MOM can be used to reduce the PBE and overcomes the problems presented by 

the integrals. 
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