Effects of Zr/Ti ratio and sintering temperature on Structural and electrical properties of PFN-PNN-PZT ceramics near the morphotropic phase boundary

Loubna Ben Amor1, Ahmed Boutarfa1,2, Omar Bentouila1,3

1 Département de Sciences de la Matière, Université Kasdi Merbah-Ouargla, BP.511, RP-Ouargla, (30000), Algérie
2 Laboratoire de Chimie Appliquée, Université de Biskra, BP.145, RP-Biskra (07000), Algérie
3 Équipe Optoélectronique, Laboratoire LENREZA, Université Kasdi Merbah-Ouargla,30000 Ouargla, Algérie

Received 6 June 2017
Published online: 24 May 2018

Abstract: 0.05Pb(Fe1/2Nb1/2)O3-0.05Pb(Ni1/2Nb1/2)O3-0.90Pb(Zr1-xTi x)O3 [PFN-PNN-PZT] quaternary piezoelectric ceramics with varying Zr/Ti ratios located near the morphotropic phase boundary (MPB) were prepared by a conventional mixed-oxide route. The samples structure was determined by X-ray diffractometry which indicate that the phase structure, of sintered PFN-PNN-PZT ceramics, was transformed from tetragonal to rhombohedral with Zr/Ti ratio increased in system. The effect of Zr/Ti ratio and sintering temperature on the structure and piezoelectric properties of our simples were investigated. The new MPB in this quaternary system with optimum piezoelectric properties was found at x = 0.51-0.53. The dependence of the piezoelectric coefficient (d33), electromechanical coupling factor (kp) and the dielectric constant (ε) on the Zr/Ti ratio shows a pronounced maximum of d33 = 141*10^-12 C/N, kp = 0.64 and ε = 850 at Zr/Ti : 51/49. As the Zr/Ti ratio increases, the Tc of PFN-PNN-PZT ceramics decreases and consequently the peak in the dielectric spectrum corresponding to the Tc moves towards room temperature. A Tc of 360 °C is obtained when Zr/Ti: 51/49.

© 2018 The authors. Published by the Faculty of Sciences & Technology, University of Biskra.
This is an open access article under the CC BY license.

1. Introduction

Lead zirconatetitanatePb(Zr xTi 1-x)O3 (PZT), ceramics based on a continuous solid solution system of perovskite ferroelectric PbTiO3 and antiferroelectric PbZrO3, are known as an important piezoelectric materials (Jaffe et al. 1971 and Sriram et al. 2010). These materials have been studied extensively since the discovery of the miscibility of lead titanate and lead zirconate early in the 1950’s (Jaffe et al. 1971).

PZT ceramics have been used in several technological applications such as ultrasonic sensors, high energy capacitors, piezoelectric actuators, non-volatile random access memories (NVRAMs), and photoelectric devices (Haertling and Land 1971, Dai et al. 1996 and Singh et al. 2006) for A-site, and Nb5+ (Kulcsar 1959, Atkin et al. 1971 and Castro et al. 2000) for B-site which lead to creation of site A vacancies, or a “hard” PZTs, when doped with acceptor like Na+ at A-site and Ni5+, Fe3+ at B-site to create some oxygen vacancies in the lattice (Weston et al. 1969, Karapuzha et al. 2016 and Yu et al. 2017). Soft PZT s have high piezoelectric characteristicics and easy to polar. Conversely, hard PZTs are difficult to pole and have low piezoelectric characteristics (Shrouq and Zang 2007). Doping PZT with Nb5+ increases the electric permittivity and piezoelectric coefficients (Bornd et al. 2001), but PZT doped with iron presents lower dielectric constant and loss constant (Rai et al. 2005).

Furthermore, the morphotropic phase boundary (MPB) (Wilkinson et al. 1998) is an essential parameter to be considered because in this region, tetragonal and rhombohedral phases coexist, and consequently the properties of PZT are improved (dielectric and piezoelectric properties).

The aim of the present work is to study the dielectric and piezoelectric properties for PFN-PNN-PZT quaternary ceramics.
Aneffort has been made to determine the MPB phase contents with variations in the Zr/Ti ratio. The effects of Zr/Ti ratio on the properties of sintered PFN-PNN-PZT quaternary system ceramics were investigated systematically.

2. Experimental

Samples with general formula: 0.05Pb[Fe\(_{1/2}\)Nb\(_{1/2}\)]O\(_3\) - 0.05Pb[Ni\(_{2/3}\)Nb\(_{1/3}\)]O\(_3\) - 0.90Pb[Zr\(_x\)Ti\(_{1-x}\)]O\(_3\) (0.49 ≤ x ≤ 0.55) were synthesized from starting materials PbO (99.90%), ZrO\(_2\) (99.90%), TiO\(_2\) (99.90%), Fe\(_2\)O\(_3\) (98%), NiO (99.90%) and Nb\(_2\)O\(_5\) (99.6%). Each mixture of the starting powders was mixed in a centrifugal mill with absolute alcohol using an agate ball for 3h. The powders were then calcined at 800 °C for 2h at heating and cooling rates of 2°C.min\(^{-1}\). The powders were molded by the pressure of 150 MPa in 12 mm in diameter and about 1 mm in thickness. The pressed disks were covered with alumina crucible and then sintered at 1180 °C for 2 h. To limit PbO loss from the pellets, a PbO-rich atmosphere was maintained by placing a PbZrO\(_3\) inside the crucible.

For phase characterization, the crystal structure were determined from XRD (XRD, Siemens D500 diffractometer) patterns, that were recorded with CuK\(_\alpha\) radiation (\(\lambda = 0.15405\) nm). The compositions of the PFN-PNN-PZT phases were identified by analysis of the peaks [(0 0 2)\(T\), (2 0 0)\(R\), (2 0 0)\(T\)] in the 2\(\theta\) range (5° - 60°). The tetragonal (T), rhombohedral (R) and tetragonal-rhombohedral (T+R) phases were characterized and their lattice parameters were calculated. The size, shape and distribution of the grains were analyzed using Scanning electron microscope (Quanta TM 250). The bulk densities of sintered samples were determined by the Archimedes method in water.

For measuring the piezoelectric characteristics, the specimens were polished to 2 mm thickness and then electrodeposited with Ag paste. The pellets are carried out at 110 °C in a silicone oil bath by applying fields of 2.5kV cm\(^{-1}\) for 45 min. All samples were aged for 24 h prior to measuring the piezoelectric and dielectric properties.

The dielectric properties (from a room temperature to 450°C) of the poled ceramics were investigated using an automatic (LCR) meter at 1 kHz. The piezoelectric properties of the specimens were calculated by the resonance-antiresonance method using an impedance analyzer.

3. Results and discussion

3.1 Phase analysis and Morphological characterization of the PFN-PNN-PZT

To identify the phase formation and the crystal structure, the powders with optimum sintering temperature were examined by XRD. Figure 1 displays XRD patterns of 0.05Pb[Fe\(_{1/2}\)Nb\(_{1/2}\)]O\(_3\) - 0.05Pb[Ni\(_{2/3}\)Nb\(_{1/3}\)]O\(_3\) - 0.90Pb[Zr\(_x\)Ti\(_{1-x}\)]O\(_3\) ceramics with various Zr/Ti ratio at 49/51, 51/49, 53/47 and 55/45 sintered at 1180°C.

It is seen that by varying the Zr/Ti ratio, one can alter the phase fraction of the phases present in the system and thereby control the properties which depend on the relative amount of phases. All peaks are well matched with the Perovskite structure. The tetragonal (T), rhombohedral

Fig. 1. XRD patterns of sintered PFN-PNN-PZT ceramics with a varying Zr addition: (a) 49; (b) 51; (c) 53 and (d) 55 sintered at 1180°C.
(R) and tetragonal-rhombohedral (T–R) phase were identified by an analysis of the peaks of tetragonal (002), tetragonal (200), rhombohedral (200) in the 2θ range of 43° to 47°. A transition from the tetragonal to the rhombohedral phase is observed as Zr/Ti ratio increases. Triplet peak indicates that the samples are consists of a mixture of tetragonal and rhombohedral phases.

For Zr/Ti : 49/51, the doublet nature of the (002) and (200) lines are clearly seen, the system is in a tetragonal phase, when the Zr/Ti was 0.51 ≤ x ≤ 0.53, morphotropic phase boundary (MPB), coexisting rhombohedral and tetragonal phases were observed and when Zr/Ti : 55/45 the phase rhombohedral observed.

The evolution of lattice parameters of the quaternary system PZT-PFNN as a function of composition is shown in Figure 2. The tetragonal phase shows that the parameter a_T increases and c_T decreases with the increase in the concentration of Zr. As the concentration of Zr increases, the parameter of the rhombohedral phase a_R decreases. The variation of these parameters is related to the distortion of the tetragonal structure, defined by the c_T/a_T ratio, which decreases with increasing Zr content. The influence of the substitution of Zr/Ti on the parameters of the structure can be explained by the difference between the ionic rays of Zr and Ti (0.68 and 0.79 Å respectively) (Chen et al. 2007). This cannot provide a complete homogeneity in the solid solutions containing both tetragonal and rhombohedral phases.

Figure 3 shows the SEM images of PZT-PFNN (49/51, 51/49, 53/47 and 55/45) ceramics sintered at 1180 °C. All the sintered ceramics appear to be very dense and of a homogeneous granular structure. At first sight, the samples appear homogeneous and there does not seem to be any grains of the pyrochlore phase which are identifiable by their pyramidal form (Kighelman 2001; Ghasemifard et al. 2009).

![Figure 2. Variation of the unit cell dimensions and ratio c_T/a_T with different Zr/Ti ratios in the PZT–PFN–PNN samples](image)

![Figure 3. SEM micrographs of PFN–PNN-PZT specimens sintered at 1180°C with different Zr/Ti ratios.](image)
The ruptures with the grain boundaries are synonymous with a good sintering. It is observed that the average grain size of the four samples varies between 1.203µm and 1.532 µm (Table 1), and the grain distribution and uniform.

Large values of the average grain size for the two samples 51/49 and 53/47 are noted at the same sintering temperature (1180 °C). This was due to the coexistence of the two phases in the latter. The increase in grain size may have caused the decrease of oxygen deficiency in the PZT (Ohtaka at al. 1995).

Figure 4 and Figure 5 shows the variation of bulk density and porosity with the compositions at variation sintering temperature (1100, 1150, and 1180 °C). The porosity decreases when the sintering temperature. Meanwhile, the density of specimens increased, and shows the maximum value of 7.4 at 51/49 with 1180 °C, so the optimum temperature of sintering is 1180 °C. The quality of the material increases with increasing density and it increases with increasing the sintering temperature (Boutarfaia 2000).

Table 1. The average grain size of PZT-PFNN ceramics.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Average size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>49/51</td>
<td>1.203</td>
</tr>
<tr>
<td>51/49</td>
<td>1.532</td>
</tr>
<tr>
<td>53/47</td>
<td>1.319</td>
</tr>
<tr>
<td>55/45</td>
<td>1.298</td>
</tr>
</tbody>
</table>

3.2 Dielectric characterization of the PFN-PNN-PZT

Figure 6 and Figure 7 shows the temperature and composition dependence of the dielectric constant of PFN-PNN-PZT ceramics with different sintering temperatures (1100, 1150 and 1180 °C) at 1 kHz. For the three temperatures of sintering 1100, 1150 and 1180 °C, we can observed that the permittivity increases gradually with the increase in the composition and takes a maximum for the sample with Zr/Ti = 51/49 included in the morphotropic phase boundary (MPB) at the temperature 1180 °C and then decreases. The region around the dielectric peak is broadened. The broadening or diffuseness of peak occurs mainly due to compositional fluctuation and/or substitution disordering in the arrangement of cations in one or more crystallographic sites of the PFN-PNN-PZT structure. Because the Curie temperature of PbZrO₃ (Tc = 230 °C) is lower than PbTiO₃ (Tc = 490 °C), increasing the Zr/Ti ratio causes the Tc of the PFN-PNN-PZT ceramic to decrease. Consequently, the peak in the dielectric spectrum corresponding to the Tc moves towards room temperature, as shown in Figure 8. The dielectric constant peaks are in the range of 6,000–13,000. The highest dielectric constant peaks achieved in the sample with x=0.51, which gives a Tc of 360°C.
The variation of dielectric loss (\(\tan \delta\)) with temperature and composition (at room temperature, 1 kHz) sintered at various temperatures (1100, 1150, and 1180 °C) are shown in Figure 9 and Figure 10 respectively. The dielectric loss exhibits a peak near the transition temperature. The dielectric loss tangent is of the same order at room temperature for all the samples, while near the transition temperature region the dielectric loss tangent has a lower value for lower Zr compositions.

3.3. Piezoelectric properties

Figure 11 and Figure 12 shows respectively the variation of piezoelectric coefficient (\(d_{31}\)) and electromechanical coupling factor (\(k_p\)) as a function of the Zr/Ti ratio sintered at 1180 °C. That as the Zr/Ti ratio increases; the value of \(d_{31}\) represents a peak of \(141 \times 10^{-12} \text{ C/N}\) at Zr/Ti ratio of 51/49; and when Zr/Ti ratio is further increased, the value of \(d_{31}\) decreases. Similar to the values of \(d_{31}\), the \(k_p\) values of the ceramic specimens form a parabola shape, and reach the peak value (0.64) at the same Zr/Ti ratio of 51/49. This maximum of piezoelectric activity can be explained as folow: during the polarization of material, the degree of domain alignment increases and becomes higher in the area of co-existence of the tetragonal and rhombohedral phases. This idea was underlined and confirmed by Heywang (1965) and Isupov (1975).

Additionally, a small amount of doping Nb\(^{5+}\) will increase the densification and reduce the grain sizes of ceramics during the sintering procedure (Chu et al. 2004, Pereira et al. 2001 and Sakaki et al. 2001). These phenomena can all be observed in our results.

The dielectric and piezoelectric properties of the samples also confirm that the MPB in PFN-PNN-PZT quaternary piezoelectric ceramics is close to \(x = 0.51\). It can be concluded from this that
the Zr/Ti ratio plays an important role in determining the material properties of the system and can be tuned to retain the MPB in a system. This is presumably attributed to the effect of hard and soft doping in the chosen PFN-PNN-PZT system. Our complex doped by Ni$^{3+}$, Fe$^{3+}$ (hard) and Nb$^{5+}$ (soft) at the B-site produces materials with the advantages of both soft and hard ceramics.

4. Conclusion

In this study, 0.05Pb[Fe$_{1/3}$Nb$_{2/3}$O$_3$-0.05Pb[Ni$_{1/3}$Nb$_{2/3}$O$_3$-0.90Pb[Zr$_{1-x}$Ti$_x$]O$_3$ ceramics (0.49 ≤ x ≤ 0.55) were successfully prepared using a solid-state mixed oxide technique at different sintering temperature. The phase structure of system was transformed from tetragonal to rhombohedral with an increase of Zr/Ti ratio. X-ray diffraction studies revealed that PFN-PNN-PZT showed a MPB region (0.51≤x≤0.53). The ratio of Zr/Ti and the sintering temperature strongly affects the electrical properties of PFN-PNN-PZT ceramics. A transition from tetragonal to rhombohedral phase and density were observed as Zr/Ti ratio increased, and greatly important improvement in electrical properties when sintering temperature and ratio of Zr/Ti increase. Scanning electron micrographs of sintered ceramic surfaces (at 1180°C) showed the dense and uniform microstructure for composition close to MPB (Zr/Ti = 51/49) with apparent density of 7.4 g/cm3. The optimum dielectric constant (ε =13108) and piezoelectric properties (tan δ = 0.012, d_{33} = 141* 10$^{-12}$ C/N and kp = 0.64) were observed for the composition sintered at 1180 °C that contains Zr/Ti ratio of 51/49, which could be suitable for high-power applications.

References

Dai, X., Z. Xu, D. Viehland (1996) Long-time relaxation from relaxor to normal ferroelectric states in Pb0.91La0.06 (Zr0.65Ti0.35 O3. Journal of the American Ceramic Society 79(7):1957-1960.

Yu, L., H. Deng, W. Zhou (2017) Influence of B site-cations on phase transition, magnetic switching and band-gap modulation in Pb(B$_{0.53}$Sr$_{0.47}$)$_3$O$_9$–Pb(Zr$_{0.53}$Ti$_{0.47}$)O$_3$ ceramics. Ceramics International 43(2): 2372-237.