


Contents

Error estimation for a piezoelectric contact problem with wear
and long memory 3

The Impact of Imperfect Vaccination on Infectious Disease
Transmission in an Age-Structured Population 20

On Fixed Point Theorems for Self-Mappings in Complex Met-
ric Spaces with Special Functions 37

On the kernel conditional density estimator with functional
explanatory variable 44

An effective operational matrix method for the solution of
non-linear third-order initial value problems 55

2



Error estimation for a piezoelectric contact prob-

lem with wear and long memory

3



International Journal of Applied Mathematics and Simulation. Issue.01, Volume.02, pages.01-16. Feb 2025 1

Error estimation for a piezoelectric
contact problem with wear and long

memory
Bachir Dehda;1 ,Mohammed Salah Mesai Aoun;2 ,Abdelaziz Azeb Ahmed;3

DOI: https://doi.org/10.69717/ijams.v1.i2.107

abstract

We study a mathematical model for a quasistatic behavior of electro-viscoelastic materials. The problem
is related to highly nonlinear and non-smooth phenomena like contact, friction and normal compliance
with wear. Then, a fully discrete scheme is introduced based on the finite element method to approximate
the spatial variable and the backward Euler scheme to discretize the time derivatives. For a numerical
scheme, we prove the existence and uniqueness of the solutions, and derive optimal order error estimates
under certain regularity assumption on the solution of the continuous problem.
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1. Introduction

The piezoelectric effect is characterized by the coupling between the mechanical and electrical behavior of
the materials. It consists of the appearance of electric charges on the surfaces of some crystals after their
deformation. Conversely, experiments have shown that the action of an electric field on the crystals can generate
stresses and deformations. A deformable material which presents such a behavior is called a piezoelectric
material. Piezoelectric materials are used extensively as switches and actuators in many engineering systems,
in radioelectronics, electroacoustics and measuring equipments. However, there are very few mathematical
results concerning contact problems involving piezoelectric materials and therefore there is a need to extend
the results on models for contact with deformable bodies which include coupling between mechanical and
electrical properties. General models for elastic materials with piezoelectric effects can be found in Batra and
Yang, 1995 and Ikeda, 1996. In Moumen and Rebiai, 2024 , the authors examine a transmission system of
the Schrödinger equation with Neumann feedback control, which includes a time-varying delay term and acts
on the exterior boundary. They utilize an appropriate energy function and a suitable Lyapunov functional.
The authors of Acil et al., 2024 demonstrate the system’s robustness, stability, and ability to respond to fast
changes, making it a promising solution for efficient energy management in hybrid PV-battery systems. A
static frictional contact problem for electric-elastic materials was considered in Maceri and Bisegna, 1998 and
Migórski, 2006. Contact problems with friction or adhesion for electro-viscoelastic materials were studied in
Selmani and Selmani, 2010 and Lerguet et al., 2007 and recently in Migórski et al., 2011 in the case of an
electrically conductive foundation.
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In this paper we consider a mathematical model for the process of contact with normal compliance and
friction contact conditions when the wear of the contact surface due to friction is taken into account. The
foundation is assumed to move steadily and only sliding contact takes places. The material is electro-viscoelastic
with long memory, defined by a relaxation operator.

This work constitutes in some sense a continuation paper of the results obtained in Selmani, 2013. The
work in Selmani, 2013 has been devoted to a qualitative results like existence and uniqueness result of weak
solutions on displacement, electric potential and wear fields have been proved but no numerical approximations
have been performed. Here we follow the latter work and propose a numerical scheme for the approximation
of the solution fields so as to elaborate a general numerical analysis of error estimates.

The main goal of this work is to formulate an approximate solution of our problem, which can quickly
converge to the exact solution. For that, this work is organized as follows. In Section 3 we give a short
description of the mathematical model and recall the main existence and uniqueness result. In Section 4, For
the numerical scheme, we prove the existence and uniqueness of the solutions. Finally, in Section 5, we derive
optimal-order error estimates under certain regularity assumptions on the solution of the continuous problem.

2. Notation and preliminaries

In this section we present the notation we shall use and some preliminary material. We denote by Sd the space
of second order symmetric tensors on Rd (d = 2, 3), while ”.” and | . | will represent the inner product and
the Euclidean norm on Sd and Rd. Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ν
denote the unit outer normal on Γ. Everywhere in the sequel the index i and j run from 1 to d, summation over
repeated indices is implied and the index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent spatial variable. We use the standard notation for Lebesgue
and Sobolev spaces associated to Ω and Γ and introduce the spaces:

H =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} ,
H1 = {σ ∈ H / Diυσ ∈ H} .

Here ε and Diυ are the deformation and divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij, j).

A subscript that follows a comma indicates a partial derivative with respect to the corresponding spatial
variable, e.g., ui,j = ∂ui/∂xj .

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the canonical inner products given by

(u,υ)H =

∫

Ω

uiυi dx,

(σ, τ )H =

∫

Ω

σijτij dx,

(u,υ)H1
= (u,υ)H + (ε(u), ε(υ))H,

(σ,τ )H1
= (σ,τ )H + (Diυσ, Diυτ )H .

The associated norms on the spaces H, H, H1 and H1 are denoted by |.|H , |.|H , |.|H1
and |.|H1

, respectively.
For every element υ ∈ H1 we also use the notation υ for the trace of υ on Γ and we denote by υν and υτ the
normal and the tangential components of υ on Γ given by

υν = υ.ν, υτ = υ − υνν. (2.1)

We also denote by σν and στ the normal and the tangential traces of a function σ ∈ H1, we recall that when
σ is a regular function then

σν = (σν).ν, στ = σν − σνν, (2.2)

and the following Green’s formula holds:

(σ, ε(υ))H + (Divσ,υ)H =

∫

Γ

συ.vda ∀υ ∈ H1. (2.3)
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Let T > 0. For every real Banach space X we use the notation C(0, T ;X) and C1(0, T ;X) for the space of
continuous and continuously differentiable functions from [0, T ] to X, respectively. We use dots for derivatives
with respect to the time variable t.

The space C(0, T ;X) is a real Banach space with the norm

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X

while C1(0, T ;X) is a real Banach space with the norm

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

∣∣∣ḟ(t)
∣∣∣
X
.

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue spaces Lp(0, T ;X) and for
the Sobolev spaces W k,p(0, T ;X). Moreover, if X1 and X2 are real Hilbert spaces then X1 ×X2 denotes the
product Hilbert space endowed with the canonical inner product (., .)X1×X2

.

3. Statement of the problem

An electro-viscoelastic body with long memory occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with outer
Lipschitz surface Γ. The body is subjected to the action of body forces of density f0 and volume electric charges
of density q0. It is also constrained mechanically and electrically on the boundary. We consider a partition of
Γ into three disjoint measurable subsets Γ1, Γ2 and Γ3, on one hand, and on two disjoint measurable subsets
Γa and Γb, on the other hand, such that meas (Γ1) > 0, meas (Γa) > 0 and Γ3 ⊂ Γb. Let T > 0 and let [0, T ]
be the time interval of interest. The body is clamped on Γ1, so the displacement field vanishes there. Surface
tractions of density f2 act on Γ2. We also assume that the electrical potential vanishes on Γa and a surface
free electrical charge of density q2 is prescribed on Γb. In the reference configuration, the body may come in
contact over Γ3 with a conductive obstacle, which is also called the foundation. The contact is frictional and
is modeled with normal compliance, taking into account the wear of the contact surfaces. The foundation is
assumed to move steadily and only sliding contact takes places. We suppose that the body forces and tractions
vary slowly in time, and therefore, the accelerations in the system may be neglected.

We are interested in the evolution of the deformation of the body and of the electric potential on the
time interval [0, T ]. The process is assumed to be isothermal, electrically static, i.e., all radiation effects
are neglected, and mechanically quasistatic, i.e., the inertial terms in the momentum balance equations are
neglected. To simplify the notation, we do not indicate explicitely the dependence of various functions on the
variables x ∈ Ω∪Γ and t ∈ [0, T ] . Then, the classical formulation of the mechanical problem of sliding frictional
contact problem with normal compliance and wear may be stated as follows.

Problem P. Find a displacement field u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] → Sd, an electric
potential field φ : Ω × [0, T ] → R, an electric displacement field D : Ω × [0, T ] → Rd and a wear function
ζ : Γ3 × [0, T ] → R such that

σ(t) = Aε(u̇(t)) + F(ε(u(t)) +

∫ t

0

M(t− s)ε(u(s)) ds (3.1)

+E∗∇φ(t) in Ω× (0, T ) ,

D = Eε (u)−B∇φ in Ω× (0, T ) , (3.2)

Diυσ + f0 = 0 in Ω× (0, T ) , (3.3)

diυD = q0 in Ω× (0, T ) , (3.4)

u = 0 on Γ1 × (0, T ) , (3.5)

σν = f2 on Γ2 × (0, T ) , (3.6)




−σν = pν (uν − g − ζ) ,
|στ | = pτ (uν − g − ζ) ,
στ = −λ (u̇τ − υ∗) , λ ≥ 0,

ζ̇ = −k0υ
∗σν ,

on Γ3 × (0, T ) , (3.7)

φ = 0 on Γa × (0, T ) , (3.8)

D.ν = q2 on Γb × (0, T ) , (3.9)

u(0) = u0, ζ(0) = 0 in Ω. (3.10)
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Here, equations (3.1) − (3.2) represent the constitutive law for a piezoelectric material with long memory
where A and F are nonlinear operators describing the purely viscous and the elastic properties of the material,
respectively, and M is a relaxation fourth order tensor. E(φ) = −∇φ is the electric field, E = (eijk) represents
the third order piezoelectric tensor, E∗is its transposed andB denotes the electric permittivity tensor. Equations
(3.3) and (3.4) represent the equilibrium equations for the stress and electric-displacement fields. Equations (3.5)
and (3.6) are the displacement-traction boundary conditions, respectively. (3.7) represents the condition with
normal compliance, friction and wear where g represents the initial gap between the body and the foundation,
k0 > 0 is a wear coefficient and υ∗ is the tangential velocity of the foundation such that υ∗ = |υ∗|. Equations
(3.8) and (3.9) represent the electric boundary conditions. In (3.10) u0 is the given initial displacement and
ζ(0) = 0 means that at the initial moment the body is not subject to any prior wear.

To obtain a variational formulation of the problem (3.1) − (3.10) we introduce the closed subspace of H1

defined by
V = {υ ∈ H1 / υ = 0 on Γ1}.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant ck > 0 which depends only on Ω and
Γ1 such that

|ε(υ|H ≥ ck |υ|H1
∀υ ∈ V.

On the space V we consider the inner product and the associated norm given by

(u,υ)V = (ε(u), ε(υ))H , |υ|V = |ε(υ|H ∀u,υ ∈ V. (3.11)

It follows from Korn’s inequality that |.|H1
and |.|V are equivalent norms on V. Therefore (V, |.|V ) is a real

Hilbert space. Moreover, by the Sobolev’s trace theorem and (3.11), there exists a constant c0 > 0, depending
only on Ω, Γ1 and Γ3 such that

|υ|L2(Γ3)d
≤ c0 |υ|V ∀υ ∈ V. (3.12)

We also introduce the spaces.
W =

{
ϕ ∈ H1(Ω) / ϕ = 0 on Γa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), diυD ∈ L2(Ω)

}
,

where diυD = (Di,i). The spaces W and W are real Hilbert spaces with the inner products given by

(φ, ϕ)W =

∫

Ω

∇φ.∇ϕ dx, (3.13)

(D,E)W =

∫

Ω

D.E dx+

∫

Ω

diυD.diυE dx. (3.14)

The associated norms will be denoted by |.|W and |.|W , respectively. Moreover, when D ∈ W is a regular
function, the following Green’s type formula holds:

(D,∇ϕ)H + (diυD, ϕ)L2(Ω) =

∫

Γ

D.ν ϕda ∀ϕ ∈ H1(Ω).

Notice also that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

|∇ϕ|H ≥ cF |ϕ|H1(Ω) ∀ϕ ∈ W, (3.15)

where cF > 0 is a constant which depends only on Ω and Γa. It fallows from (3.15) that |.|H1(Ω) and |.|W are

equivalent norms on W and therfore (W, |.|W ) is a real Hilbert space. Moreover, by the Sobolev’s trace theorem
and (3.13), there exists a constant a0 > 0, depending only on Ω, Γa and Γ3 such that

|ϕ|L2(Γ3)
≤ a0 |ϕ|W ∀ϕ ∈ W. (3.16)

In the study of the mechanical problem (3.1) − (3.10), we make the following assumptions. Assume that the
operators A, F , E , B and the functions pr (r = ν, τ) satisfy the following conditions with LA, mA, LF , Lr and
mr being positive constants:





(a) A : Ω× Sd → Sd
(b) |A(x, ε1)−A(x, ε2)| ≤ LA |ε1 − ε2|

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) (A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA |ε1 − ε2|2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x → A(x, ε) is Lebesgue
measurable in Ω for any ε ∈ Sd.

(e) x → A(x,0) ∈ H.

(3.17)
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



(a) F : Ω× Sd → Sd
(b) |F(x, ε1)−F(x, ε2)| ≤ LF |ε1 − ε2|

∀ε1, ε2 ∈ Sd a.e. x ∈ Ω.
(c) The mapping x → F(x, ε) is Lebesgue

measurable on Ω for any ε ∈ Sd.
(d) x → F(x,0) ∈ H.

(3.18)





(a) E : Ω× Sd → Rd

(b) E(x)τ = (ei j k (x)τjk)
∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.

(c) ei jk = eikj ∈ L∞(Ω).

(3.19)





(a) B = (bij) : Ω× Rd → Rd

(b) B(x)E = (bij(x)Ej)
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji , bij ∈ L∞(Ω).

(d) BE.E ≥ mB |E|2
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.20)





(a) pr : Γ3 × R → R+ (r = ν, τ)
(b) |pr(x, α1)− pr(x, α2)| ≤ Lr |α1 − α2|

∀α1, α2 ∈ R, a.e. x ∈ Γ3.
(c) |pr(x, α)| ≤ mr ∀α ∈ R, p.p. x ∈ Γ3,
(d) The mapping x → pr(x, α) is Lebesgue

measurable on Γ3 for any α ∈ R.
(e) x → pr(x, 0) ∈ L2 (Γ3) .

(3.21)

The relaxation tensor M satisfies

M ∈ C(0, T ;H∞), (3.22)

where H∞ is the space of fourth order tensor field given by

H∞ = {E = (Eijkl) / Eijkl = Ejikl = Eklij ∈ L∞ (Ω) , 1 ≤ i, j, k, l ≤ d} ,

which is a real Banach space with the norm

|E|H∞
=

∑

1≤i,j,k,l≤d

|Eijkl|L∞(Ω) .

The density of volume forces, traction, volume electric charges and surface electric charges have the regularity

f0 ∈ C(0, T ;H), f2 ∈ C(0, T ;L2(Γ2)
d), (3.23)

q0 ∈ C(0, T ;L2(Ω)), q2 ∈ C(0, T ;L2(Γb)). (3.24)

q2 = 0 on Γ3 ∀t ∈ [0, T ] . (3.25)

We assume that the gap function g and the initial displacement field u0 satisfy

g ∈ L2(Γ3), g ≥ 0 a.e. x ∈ Γ3. (3.26)

u0 ∈ V. (3.27)

We define the three mappings f : [0, T ] → V , q : [0, T ] → W and j : V × V × L2(Γ3) → R, respectively, by

(f(t),υ)V =

∫

Ω

f0(t).υdx+

∫

Γ2

f2(t).υda, (3.28)

(q(t), ϕ)W =

∫

Ω

q0(t)ϕdx−
∫

Γb

q2(t)ϕda. (3.29)

j(u,υ, ζ ) =

∫

Γ3

pν(uν − g − ζ )υνda (3.30)

+

∫

Γ3

pτ (uν − g − ζ ) |υτ − υ∗| da,
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for all u,υ ∈ V , ζ ∈ L2(Γ3) and t ∈ [0, T ]. The functional j : V × V × L2(Γ3) → R satisfies

{
For all u ∈ V and ζ ∈ L2(Γ3), υ → j(u,υ, ζ)
is proper, convex and lower semicontinuous on V.

We note that condition (3.23) and (3.24) imply that

f ∈ C(0, T ;V ), q ∈ C(0, T ;W ). (3.31)

Using standard arguments we obtain the variational formulation of the mechanical problem (3.1)− (3.10).
Problem VP. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H1, an electric potential

field φ : [0, T ] → W , an electric displacement field D : [0, T ] → W and a wear function ζ : [0, T ] → L2(Γ3)
such that for all t ∈ [0, T ] ,

σ(t) = Aε(u̇(t)) + Fε(u(t)) +

∫ t

0

M(t− s)ε(u(s))ds+ E∗∇φ(t), (3.32)

(σ(t) , ε(υ − u̇(t)))H + j(u(t),υ, ζ(t))− j(u(t), u̇(t), ζ(t)) (3.33)

≥ (f(t),υ − u̇(t))V ∀υ ∈ V,

D(t) = Eε(u(t))−B∇φ(t), (3.34)

(D(t),∇ϕ)H = −(q(t), ϕ)W ∀ϕ ∈ W, (3.35)

ζ̇ = k0υ
∗pν (uν − g − ζ) , (3.36)

u(0) = u0, ζ(0) = 0, (3.37)

The main result in this section is the following existence and uniqueness result (see for details Selmani, 2013).
Theorem 3.1. Assume that (3.17) − (3.27) hold. Then, there exists a unique solution {u,σ,φ,D, ζ} to

Problem VP. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), (3.38)

σ ∈ C(0, T ;H1), (3.39)

φ ∈ C(0, T ;W ), (3.40)

D ∈ C(0, T ;W), (3.41)

ζ ∈ C1(0, T ;L2(Γ3)). (3.42)

4. Fully discrete approximation

In this section, we introduce a discrete numerical scheme of Problem VP. We assume that the conditions
(3.17)− (3.27) hold. Thus, it follows from Theorem 3.1 that Problem VP has a unique solution. More precisely,
we are interested in solving Problem VP over a finite time interval [0, T ], with T > 0 arbitrary but fixed. Thus,
let N be a positive integer; we define the time step size k = T

N and we consider the uniform time discretization
tn = nk, 0 ≤ n ≤ N, where N is a sufficiently large integer. For a continuous function υ(t) with values in a
function space, we write υj = υ(tj), 0 ≤ j ≤ N . For spatial discretization, we consider a polygonal domain Ω.

For the discretization of the integrals, we use the rectangle method

∫ tj+1

tj

υ(s)ds = kυj .

Let Hh and Bh be the finite element spaces of piecewise constants. The spaces H and L2 (Γ3) are approximated
by Hh and Bh, respectively.

The V and W spaces are approximated respectively by the following finite element spaces:

V h =
{
υh ∈

[
C
(
Ω
)]d | υh|K ∈ [P1 (K)]

d ∀K ∈ Th, υh = 0 on Γ1

}
,

Wh =
{
ϕh ∈ C

(
Ω
)
| ϕh|K ∈ P1 (K) ∀K ∈ Th, ϕh = 0 on Γa

}
,

where Th is an element derived from the triangularization of Ω, P1 (K) is the space of polynomials of degree
smaller or equal to one on K and h refers to the spatial discretion parameter which is defined as

h = max
K∈Th

diam(K),with diam(K) = max {|x− y| ; x, y ∈ K} .
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For all τ ∈ H, PHhτ is the orthogonal projection of finite elements on Hh,

(
PHhτ , τh

)
H =

(
τ , τh

)
H ∀τh ∈ Hh.

It is convenient to introduce the velocity field

υ(t) = u̇(t) so u(t) = u0 +

∫ t

0

υ(s)ds, t ∈ [0, T ] .

It follows from Theorem 3.1 that υ ∈ C(0, T ;V ) and for all t ∈ [0, T ], we have

σ(t) = Aε(υ(t)) + Fε(u(t)) +

∫ t

0

M(t− s)ε(u(s))ds+ E∗∇φ(t), (4.1)

(σ(t) , ε(υ − υ(t)))H + j(u(t),υ, ζ(t))− j(u(t),υ(t), ζ(t)) (4.2)

≥ (f(t),υ − υ(t))V ∀υ ∈ V,

Let uh
0 ∈ V h be a finite element approximation of u0.

The fully discrete approximation of Problem VP is the following.

Problem VPhk. Find a discrete velocity field υhk =
{
υhk
n

}N
n=0

⊂ V h, a discrete stress field σhk ={
σhk

n

}N
n=0

⊂ Hh, a discrete electric potential φhk =
{
φhk
n

}N
n=0

⊂ Wh and a discrete wear field ζhk =
{
ζhkn

}N
n=0

⊂ Bh such that
σh

0 = PHhAε(υh
0 ) + PHhFε(uh

0 ) + PHhE∗∇φh
0 , (4.3)

(σh
0 , ε(υ

h − υh
0 ))H + j(uh

0 ,υ
h, 0)− j(uh

0 ,υ
h
0 , 0) (4.4)

≥ (f (0) ,υh − υh
0 )V ∀υh ∈ V h,

(B∇φh
0 ,∇ϕh)H − (Eε(uh

0 ),∇ϕh)H (4.5)

= (q (0) , ϕh)W ∀ϕh ∈ Wh,

and for n ≥ 1,
σhk

n = PHhAε(υhk
n ) + PHhFε(uhk

n−1) + PHhE∗∇φhk
n (4.6)

+k

n−1∑

j=0

PHh (Rn)
hk
j

(σhk
n , ε(υh − υhk

n ))H + j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) (4.7)

≥ (fn,υ
h − υhk

n )V ∀υh ∈ V h,

(B∇φhk
n ,∇ϕh)H − (Eε(uhk

n−1),∇ϕh)H (4.8)

= (qn, ϕ
h)W ∀ϕh ∈ Wh,

ζhkn = kk0υ
∗
n−1∑

j=0

pν
(
uhk
νj − g − ζhkj

)
. (4.9)

Here, we used the following notations

uhk
0 = uh

0 , υhk
0 = υh

0 , σhk
0 = σh

0 , φhk
0 = φh

0 and ζhk0 = ζh0 = ζ0 = 0.

We use the following discrete displacement field

uhk
n = uh

0 + k

n∑

j=1

υhk
j n ≥ 1, (4.10)

We also use the notations 



(Rn)
hk
j = M(tn − tj)ε(u

hk
j ),

(Rn) (s) = M(tn − s)ε(u(s)),
(Rn)j = M(tn − tj)ε(uj).

(4.11)

We have the following existence and uniqueness result.
Theorem 4.1. Suppose that the conditions stated in Theorem 3.1 are satisfied. Then the Problem VPhk

has a unique solution.
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Proof. First,we show that (4.3) − (4.5) uniquely determines σh
0 ∈ Hh, υh

0 ∈ V h and φh
0 ∈ Wh. From

a discrete analogue of Lemma 4.5 in Selmani, 2013, it follows that (4.5) has a unique solution φh
0 ∈ Wh.

Combining (4.3) and (4.4), we obtain an elliptic variational inequality which has a unique solution υh
0 ∈ V h.

σh
0 ∈ Hh is then calculated from (4.3).
Next, we show that with

{(
σhk

j ,υhk
j , φhk

j , ζhkj

)}
j≤n−1

⊂ Hh×V h×Wh×Bh known, (4.6)− (4.9) uniquely

determines
(
σhk

n ,υhk
n , φhk

n , ζhkn

)
⊂ Hh × V h × Wh × Bh. Given

{(
uhk
j , ζhkj

)}
j≤n−1

∈ V h × Bh, a discrete

analogue of Lemma 4.5 in Selmani, 2013 shows that (4.8) has a unique solution φhk
n ∈ Wh and ζhkn ∈ Bh is

computed from (4.9).
Finally, combining (4.6) and (4.7), we obtain

(Aε(υhk
n ) , ε(υh − υhk

n ))H + j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) (4.12)

≥ (rn,υ
h − υhk

n )V ∀υh ∈ V h,

where
(rn,υ

h)V = (fn,υ
h)V −

(
Fε(uhk

n−1) + E∗∇φhk
n (4.13)

+k

n−1∑

j=0

(Rn)
hk
j , ε(υh)




H

.

By a standard result on elliptic variational inequalities, there exists a unique υhk
n ∈ V h satisfying (4.12). We

compute σhk
n from (4.6). □

5. Error estimates

This section is devoted to deriving error estimates for the discrete solution. We make the following solution
regularity assumptions:

(M,u, ζ) ∈ C1(0, T ;H∞ × V × L2(Γ3)), (5.1)

(υ,σ, φ) ∈ C(0, T ;V ×H1 ×W ), (5.2)

(υ,σ, φ) ∈ C(0, T ;H2 (Ω)
d ×H1 (Ω)

d×d ×H2 (Ω)), (5.3)

υ ∈ C
(
0, T ;H2(Γ3)

d
)
,σν ∈ C(0, T ;L2(Γ)d),u0 ∈ H2(Ω)d. (5.4)

In this section, no summation is assumed over a repeated index and c denotes a positive constant which depends
on the problem data, but is independent on the discretization parameters, h and k.

Lemma 5.1. Assume that (3.17) − (3.27) hold. Let {σ,υ,u, φ, ζ} and
{
σhk

n ,υhk
n ,uhk

n , φhk
n , ζhkn

}
denote

the solution to Problems VP and VPhk, respectively. Then, the following error estimates hold for all υh ∈ V h

and ϕh ∈ Wh :

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣
H +

∣∣υn − υhk
n

∣∣
V
+
∣∣un − uhk

n

∣∣
V

+
∣∣φn − φhk

n

∣∣
W

+
∣∣ζn − ζhkn

∣∣
L2(Γ3)

}
(5.5)

≤ ck + c

{∣∣u0 − uh
0

∣∣
V
+ max

0≤n≤N
|(I − PHh)σn|H + max

0≤n≤N
inf

ϕh∈Wh

∣∣φn − ϕh
∣∣
W

+ max
0≤n≤N

inf
υh∈V h

(∣∣υn − υh
∣∣
V
+
∣∣υn − υh

∣∣ 12
L2(Γ3)d

)}
.

Proof. First, we make an error estimate on the electric potential. We combine (3.34) and (3.35), we have
for all t ∈ [0, T ] and ϕ ∈ W ,

(B∇φ(t),∇ϕ)H − (Eε(u(t)),∇ϕ)H = (q(t), ϕ)W . (5.6)

Taking (5.6) at t = tn and for all ϕ = ϕh ∈ Wh and n ≥ 1, it follows that

(B∇φn,∇ϕh)H − (Eε(un),∇ϕh)H = (q(t), ϕh)W . (5.7)

We subtract (4.8) from (5.7) to obtain for all ϕh ∈ Wh and n ≥ 1

(B∇φn −B∇φhk
n ,∇ϕh)H − (Eε(un)− Eε(uhk

n−1),∇ϕh)H = 0,

thus
(B∇φn −B∇φhk

n ,∇
(
ϕh − φhk

n

)
)H = (Eε(un)− Eε(uhk

n−1),∇
(
ϕh − φhk

n

)
)H ,
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using the writing ϕh = ϕh + φn − φn, we see that

(B∇φn −B∇φhk
n ,∇

(
φn − φhk

n

)
)H

= (B∇φn −B∇φhk
n ,∇

(
φn − ϕh

)
)H

+(Eε(un)− Eε(uhk
n−1),∇

(
φn − φhk

n

)
)H

−(Eε(un)− Eε(uhk
n−1),∇

(
φn − ϕh

)
)H .

Using (3.20) to see that

mB

∣∣φn − φhk
n

∣∣2
W

≤ (B∇φn −B∇φhk
n ,∇

(
φn − ϕh

)
)H

+(Eε(un)− Eε(uhk
n−1),∇

(
φn − φhk

n

)
)H

−(Eε(un)− Eε(uhk
n−1),∇

(
φn − ϕh

)
)H ,

using the Cauchy-Schwarz inequality and the following inequality

ab ≤ ϵa2 +
1

4ϵ
b2 ∀ϵ > 0, (5.8)

we obtain ∣∣φn − φhk
n

∣∣2
W

≤ c
(∣∣un − uhk

n−1

∣∣2
V
+
∣∣φn − ϕh

∣∣2
W

)
. (5.9)

From (5.6) at t = 0 with ϕ = ϕh ∈ Wh, we have

(B∇φ0,∇ϕh)H − (Eε(u0),∇ϕh)H = (q (0) , ϕh)W ,

We subtract (4.5) from the previous equality to obtain

(B∇φ0 −B∇φh
0 ,∇ϕh)H − (Eε(u0)− Eε(uh

0 ),∇ϕh)H = 0,

then, we can write

(B∇φ0 −B∇φh
0 ,∇

(
ϕh − φh

0

)
)H = (Eε(u0)− Eε(uh

0 ),∇
(
ϕh − φh

0

)
)H .

We use the writing ϕh = ϕh − φ0 + φ0 to note

(B∇φ0 −B∇φh
0 ,∇

(
φ0 − φh

0

)
)H

= (B∇φ0 −B∇φh
0 ,∇

(
φ0 − ϕh

)
)H

+(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − φh

0

)
)H

−(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − ϕh

)
)H .

By using (3.20) to see that

mB

∣∣φ0 − φh
0

∣∣2
W

≤ (B∇φ0 −B∇φh
0 ,∇

(
φ0 − ϕh

)
)H

+(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − φh

0

)
)H

−(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − ϕh

)
)H ,

Using the inequality of Cauchy-Schwarz, (3.19)− (3.20) and (5.8), we find

∣∣φ0 − φh
0

∣∣2
W

≤ c
(∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − ϕh

∣∣2
W

)
. (5.10)

Next, we state two relations that we will use in error estimations ( see Sofonea et al., 2005 )

∣∣un − uhk
n

∣∣2
V
≤ ck2 +

∣∣u0 − uh
0

∣∣2
V
+ ck

n∑

j=1

∣∣υj − υhk
j

∣∣2
V
, (5.11)

∣∣un − uhk
n−1

∣∣2
V
≤ ck2 +

∣∣u0 − uh
0

∣∣2
V
+ ck

n−1∑

j=0

∣∣υj − υhk
j

∣∣2
V
. (5.12)
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We note for all n ≥ 1

θhkn (Rn) =

∫ tn

0

(Rn) (s)ds−
n−1∑

j=0

k (Rn)
hk
j

=
n−1∑

j=0

∫ tj+1

tj

[
(Rn) (s)− (Rn)j

]
ds

+
n−1∑

j=0

k
[
(Rn)j − (Rn)

hk
j

]
,

then
θhkn (Rn) = In + Ihkn , (5.13)

where

In =

n−1∑

j=0

∫ tj+1

tj

[
(Rn) (s)− (Rn)j

]
ds, Ihkn =

n−1∑

j=0

k
[
(Rn)j − (Rn)

hk
j

]
.

We have

In =
n−1∑

j=0

∫ tj+1

tj

[M(tn − s)ε(u(s))−M(tn − tj)ε(uj)] ds

=

n−1∑

j=0

∫ tj+1

tj

[M(tn − s)ε(u(s))−M(tn − s)ε(uj)] ds

+
n−1∑

j=0

∫ tj+1

tj

[M(tn − s)−M(tn − tj)] ε(uj)ds.

We use the hypothesis (3.22), we obtain

|In|H ≤ c
n−1∑

j=0

∫ tj+1

tj

[
|u (s)− uj |V + |M(tn − s)−M(tn − tj)|H∞

]
ds.

Using (5.1), the sum can be bounded by ck where the constant c is proportional to |u̇|C(0,T ;V )+
∣∣∣Ṁ
∣∣∣
C(0,T ;H∞)

.

Hence
|In|2H ≤ ck2. (5.14)

We also have

Ihkn =
n−1∑

j=0

k
[
M(tn − tj)ε(uj)−M(tn − tj)ε(u

hk
j )
]
,

From (3.22) and (3.11), we find

∣∣Ihkn

∣∣
H ≤ ck

n−1∑

j=0

∣∣uj − uhk
j

∣∣
V
. (5.15)

We combine (5.13)− (5.14) and (5.15) to see that

∣∣θhkn (Rn)
∣∣2
H ≤ ck2 + ck

n−1∑

j=0

∣∣uj − uhk
j

∣∣2
V
. (5.16)

Furthermore, we apply (4.1) at t = tn to see that

σn = Aε(υn) + Fε(un) +

∫ tn

0

M(tn − s)ε (u(s)) ds+ E∗∇φn. (5.17)

Using (4.6) and (5.17), we can write for all n ≥ 1

σn − σhk
n = (I − PHh)σn + PHhσn − σhk

n

= (I − PHh)σn + PHh

[(
Aε(υn)−Aε(υhk

n )
)
+
(
Fε(un)−Fε(uhk

n−1)
)
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+
(
E∗∇φn − E∗∇φhk

n

)
+ θhkn (Rn)

]
.

Here, we used the symbol I for the identity application on H. using the hypotheses on operators A , F and E ,
as well as inequality |PHhτ |H ≤ |τ |H, we have

∣∣σn − σhk
n

∣∣2
H ≤ c

[
|(I − PHh)σn|2H +

∣∣υn − υhk
n

∣∣2
V

]
(5.18)

+c
[∣∣un − uhk

n−1

∣∣2
V
+
∣∣φn − φhk

n

∣∣2
W

+
∣∣θhkn (Rn)

∣∣2
H

]
.

For n = 0, using (4.1) at t = 0 and (4.3), we have

σ0 − σh
0 = (I − PHh)σ0 + PHhσ0 − σh

0

= (I − PHh)σ0 + PHh

[(
Aε(υ0)−Aε(υh

0 )
)
+
(
Fε(u0)−Fε(uh

0 )
)

+
(
E∗∇φ0 − E∗∇φh

0

)]
.

Using (3.17)− (3.19) we find

∣∣σ0 − σh
0

∣∣2
H ≤ c

[
|(I − PHh)σ0|2H +

∣∣υ0 − υh
0

∣∣2
V

]
. (5.19)

+c
[∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

]

We combine (4.1) and (4.2), taking t = tn for all υ ∈ V and n ≥ 1, we obtain

(
Aε(υn) + Fε(un) +

∫ tn

0

(Rn) (s)ds+ E∗∇φn, ε(υ − υn)

)

H
(5.20)

+j(un,υ, ζn)− j(un,υn, ζn) ≥ (fn,υ − υn)V .

By combining (4.6) and (4.7) to write for all υh ∈ V h and n ≥ 1

(Aε(υhk
n ) + Fε(uhk

n−1) + E∗∇φhk
n + k

n−1∑

j=0

(Rn)
hk
j , ε(υh − υhk

n ))H (5.21)

+j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) ≥ (fn,υ

h − υhk
n )V .

From (3.17) the hypothesis on A, we have for all n ≥ 1

mA
∣∣υn − υhk

n

∣∣2
V

≤ (Aε(υn)−Aε(υhk
n ), ε(υn − υhk

n ))H

= (Aε(υn), ε(υn − υhk
n ))H

−(Aε(υhk
n ), ε(υn − υh))H

+(Aε(υhk
n ), ε(υhk

n − υh))H.

We use (5.20) with υ = υhk
n to estimate the first term and (5.21) to estimate the third term, we add (σn, ε(υn−

υh))H − (σn, ε(υn − υh))H to the second side, after some elementary algebraic operations, we obtain

mA
∣∣υn − υhk

n

∣∣2
V

(5.22)

≤ (Aε(υn)−Aε(υhk
n ), ε(υn − υh))H +

(
Fε(un)−Fε(uhk

n−1) + θhkn (Rn)

+E∗∇φn − E∗∇φhk
n , ε(υn − υh)

)
H −

(
Fε(un)−Fε(uhk

n−1) + θhkn (Rn)

+E∗∇φn − E∗∇φhk
n , ε(υn − υhk

n )
)
H + j(uhk

n−1,υ
h, ζhkn )− j(uhk

n−1,υn, ζ
hk
n )

+j(un,υ
hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn ) +R1,n

(
υh
)
,

where
R1,n

(
υh
)
= −(σn, ε(υn − υh))H + (fn,υn − υh)V . (5.23)

From (3.30) the definition of j, we have for all n ≥ 1

∣∣j(un,υ
hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn )

∣∣

=

∣∣∣∣
∫

Γ3

pν(unν − g − ζn )υhk
nνda+

∫

Γ3

pτ (unν − g − ζn )
∣∣υhk

nτ − υ∗∣∣ da
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−
∫

Γ3

pν(unν − g − ζn )υnνda−
∫

Γ3

pτ (unν − g − ζn ) |υnτ − υ∗| da

+

∫

Γ3

pν(u
hk
n−1ν − g − ζhkn )υnνda+

∫

Γ3

pτ (u
hk
n−1ν − g − ζhkn ) |υnτ − υ∗| da

−
∫

Γ3

pν(u
hk
n−1ν − g − ζhkn )υhk

nνda−
∫

Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υhk
nτ − υ∗∣∣ da

∣∣∣∣

=

∣∣∣∣
∫

Γ3

[
pν(unν − g − ζn )− pν(u

hk
n−1ν − g − ζhkn )

] [
υhk
nν − υnν

]
da

+

∫

Γ3

[
pτ (unν − g − ζn )− pτ (u

hk
n−1ν − g − ζhkn )

] [∣∣υhk
nτ − υ∗∣∣− |υnτ − υ∗|

]
da

∣∣∣∣

≤
∫

Γ3

∣∣pν(unν − g − ζn )− pν(u
hk
n−1ν − g − ζhkn )

∣∣ ∣∣υhk
nν − υnν

∣∣ da

+

∫

Γ3

∣∣pτ (unν − g − ζn )− pτ (u
hk
n−1ν − g − ζhkn )

∣∣ ∣∣υhk
nτ − υnτ

∣∣ da.

From (3.21) and inequality (3.12) with the inequality |ur| ≤ |u| (r = ν, τ) ∀u ∈ Rd, we find for all n ≥ 1
∣∣j(un,υ

hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn )

∣∣ (5.24)

≤ (Lν + Lτ ) c
2
0

∣∣un − uhk
n−1

∣∣
V

∣∣υn − υhk
n

∣∣
V

+(Lν + Lτ ) c0
∣∣ζn − ζhkn

∣∣
L2(Γ3)

∣∣υn − υhk
n

∣∣
V
.

Similarly, we have for all n ≥ 1 ∣∣j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υn, ζ

hk
n )
∣∣

=

∣∣∣∣
∫

Γ3

pν(u
hk
n−1ν − g − ζhkn )υh

νda+

∫

Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υh
τ − υ∗∣∣ da

−
∫

Γ3

pν(u
hk
n−1ν − g − ζhkn )υnνda−

∫

Γ3

pτ (u
hk
n−1ν − g − ζhkn ) |υnτ − υ∗| da

∣∣∣∣

≤
∫

Γ3

pν(u
hk
n−1ν − g − ζhkn )

∣∣υh
ν − υnν

∣∣ da+

∫

Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υh
τ − υnτ

∣∣ da

Using (3.21) and (3.12) to deduce that

∣∣j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υn, ζ

hk
n )
∣∣ ≤ (mν +mτ ) c0

∣∣υn − υh
∣∣2
V
. (5.25)

We substitute (5.24) − (5.25) into (5.22) and using the assumptions on A, F , M and E , the Cauchy-Schwarz
inequality and (5.8), we obtain for all n ≥ 1

∣∣υn − υhk
n

∣∣2
V
≤ c

(∣∣un − uhk
n−1

∣∣2
V
+
∣∣φn − φhk

n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

)
(5.26)

+c
(∣∣υn − υh

∣∣2
V
+
∣∣θhkn (Rn)

∣∣2
H

)
+
∣∣R1,n

(
υh
)∣∣ .

Similarly, we apply (4.1)− (4.2) at t = 0 with the initial condition ζ (0) = 0, for all υ ∈ V , we find

(Aε(υ0) + Fε(u0) + E∗∇φ0, ε(υ − υ0))H (5.27)

+j(u0,υ, 0)− j(u0,υ0, 0) ≥ (f (0) ,υ − υ0)V .

Using (4.3)− (4.4) with ζh0 = 0 to see that for all υh ∈ V h

(Aε(υh
0 ) + Fε(uh

0 ) + E∗∇φh
0 , ε(υ

h − υh
0 ))H (5.28)

+j(uh
0 ,υ

h, 0)− j(uh
0 ,υ

h
0 , 0) ≥ (f (0) ,υh − υh

0 )V .

We use (3.17), we have

mA
∣∣υ0 − υh

0

∣∣2
V

≤ (Aε(υ0)−Aε(υh
0 ), ε(υ0 − υhk

0 ))H

= (Aε(υ0), ε(υ0 − υh
0 ))H

−(Aε(υh
0 ), ε(υ0 − υh))H

+(Aε(υh
0 ), ε(υ

h
0 − υh))H.
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Using (5.27) with υ = υh
0 to estimate the first term and (5.27) to estimate the third term, and adding

(σ0, ε(υ0 − υh))H − (σ0, ε(υ0 − υh))H to the second side, we obtain

mA
∣∣υ0 − υh

0

∣∣2
V

(5.29)

≤ (Aε(υ0)−Aε(υh
0 ), ε(υ0 − υh))H +

(
Fε(u0)−Fε(uhk

0 )

+E∗∇φ0 − E∗∇φh
0 , ε(υ0 − υh)

)
H −

(
Fε(u0)−Fε(uh

0 )

+E∗∇φ0 − E∗∇φhk
0 , ε(υ0 − υh

0 )
)
H + j(uh

0 ,υ
h, 0)− j(uh

0 ,υ0, 0)

+j(u0,υ
h
0 , 0)− j(u0,υ0, 0) + j(uh

0 ,υ0, 0)− j(uh
0 ,υ

h
0 , 0) +R1,0

(
υh
)
.

From (3.21) and by the same argument that we used in (5.24), we find

∣∣j(u0,υ
h
0 , 0)− j(u0,υ0, 0) + j(uh

0 ,υ0, 0)− j(uh
0 ,υ

h
0 , 0)

∣∣ (5.30)

≤ (Lν + Lτ ) c
2
0

∣∣u0 − uh
0

∣∣
V

∣∣υ0 − υh
0

∣∣
V
.

Similarly, using a similar argument that we used in (5.25) to see that

∣∣j(uh
0 ,υ

h, 0)− j(uh
0 ,υ0, 0)

∣∣ ≤ (mν +mτ ) c0
∣∣υ0 − υh

∣∣2
V
. (5.31)

We substitute (5.30) − (5.31) into (5.29) and using (3.17) − (3.19), the Cauchy-Schwarz inequality and (5.8),
we obtain ∣∣υ0 − υh

0

∣∣2
V
≤ c

(∣∣u0 − uh
0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

+
∣∣υ0 − υh

∣∣2
V

)
+
∣∣R1,0

(
υh
)∣∣ . (5.32)

Combining (5.10) and (5.19) with (5.32), it is easy to see that

∣∣σ0 − σh
0

∣∣2
H +

∣∣υ0 − υh
0

∣∣2
V
+
∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

(5.33)

≤ c
(∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − ϕh

∣∣2
W

+
∣∣υ0 − υh

∣∣2
V
+ |(I − PHh)σ0|2H

)
+
∣∣R1,0

(
υh
)∣∣ .

On the other hand, for the wear function, we use (3.36) at t = tn, and ζ (0) = 0, we obtain for all n ≥ 1

ζn = k0υ
∗
∫ tn

0

pν (uν (s)− g − ζ (s)) ds, (5.34)

we subtract (4.9) from (5.34) to see that

ζn − ζhkn = k0υ
∗



n−1∑

j=0

∫ tj+1

tj

(
pν (uν (s)− g − ζ (s))− pν

(
uhk
νj − g − ζhkj

))
ds


 ,

using (3.21), the inequality |uν | ≤ |u| ∀u ∈ Rd and (3.12), we obtain

∣∣ζn − ζhkn

∣∣
L2(Γ3)

≤ c
n−1∑

j=0

∫ tj+1

tj

[∣∣uν (s)− uhk
νj

∣∣
L2(Γ3)

+
∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds

≤ c

n−1∑

j=0

∫ tj+1

tj

[∣∣u (s)− uhk
j

∣∣
L2(Γ3)d

+
∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds

≤ c

n−1∑

j=0

∫ tj+1

tj

[∣∣u (s)− uhk
j

∣∣
V
+
∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds,

therefore

∣∣ζn − ζhkn

∣∣
L2(Γ3)

≤ c

n−1∑

j=0

∫ tj+1

tj

[
|u (s)− uj |V + |ζ (s)− ζj |L2(Γ3)

]
ds

+ck
n−1∑

j=0

[∣∣uj − uhk
j

∣∣
V
+
∣∣ζj − ζhkj

∣∣
L2(Γ3)

]
,
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using (5.1), the first sum can be bounded by ck where the constant c is proportional to |u̇|C(0,T ;V )+
∣∣∣ζ̇
∣∣∣
C(0,T ;L2(Γ3))

.

Thus
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

≤ ck2 + ck
n−1∑

j=0

∣∣uj − uhk
j

∣∣2
V
+ ck

n−1∑

j=0

∣∣ζj − ζhkj

∣∣2
L2(Γ3)

(5.35)

By adding (5.9), (5.11)− (5.12), (5.16), (5.18), (5.26) and (5.35) to obtain for all n ≥ 1

∣∣σn − σhk
n

∣∣2
H +

∣∣υn − υhk
n

∣∣2
V
+
∣∣un − uhk

n

∣∣2
V
+
∣∣φn − φhk

n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

≤ ck2 + c
∣∣u0 − uh

0

∣∣2
V
+ c

[
|(I − PHh)σn|2H +

∣∣φn − ϕh
∣∣2
W

+
∣∣υn − υh

∣∣2
V

]

+
∣∣R1,n

(
υh
)∣∣+ ck

n−1∑

j=0

{∣∣σj − σhk
j

∣∣2
H +

∣∣υj − υhk
j

∣∣2
V
+
∣∣uj − uhk

j

∣∣2
V

+
∣∣φj − φhk

j

∣∣2
W

+
∣∣ζj − ζhkj

∣∣2
L2(Γ3)

}
.

From this inegality and (5.33), applying Gronwall’s Lemma (see for example Sofonea et al., 2012 ) to see that

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣2
H +

∣∣υn − υhk
n

∣∣2
V
+
∣∣un − uhk

n

∣∣2
V

+
∣∣φn − φhk

n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

}
(5.36)

≤ ck2 + c
∣∣u0 − uh

0

∣∣2
V
+ c max

0≤n≤N

{
|(I − PHh)σn|2H + inf

ϕh∈Wh

∣∣φn − ϕh
∣∣2
W

+ inf
υh∈V h

[∣∣υn − υh
∣∣2
V
+
∣∣R1,n

(
υh
)∣∣
]}

.

To find a bound of R1,n

(
υh
)
defined in (5.23), we integrate by parts the first term to obtain

R1,n

(
υh
)

=

∫

Ω

Diυσn.
(
υn − υh

)
dx−

∫

Γ

(σν)n
(
υn − υh

)
da

+(fn,υn − υh)V .

Using (3.28) and we apply (3.3) and (3.6) at t = tn to see that for all n ≥ 0

R1,n

(
υh
)

= −
∫

Ω

f0n.
(
υn − υh

)
dx−

∫

Γ2

f2n

(
υn − υh

)
da

−
∫

Γ3

(σν)n
(
υn − υh

)
da+

∫

Ω

f0n.
(
υn − υh

)
dx

+

∫

Γ2

f2n

(
υn − υh

)
da

= −
∫

Γ3

(σν)n
(
υn − υh

)
da,

using the Cauchy-Schwarz inequality we see that
∣∣R1,n

(
υh
)∣∣ ≤ |(σν)n|L2(Γ3)d

∣∣υn − υh
∣∣
L2(Γ3)d

.

From (5.4) we deduce that ∣∣R1,n

(
υh
)∣∣ ≤ c

∣∣υn − υh
∣∣
L2(Γ3)d

,

Combining the previous estimate with (5.36), we find (5.5).□
Theorem 5.2. Suppose that k is sufficiently small. Then, under the regularity assumptions (5.1)− (5.4),

we have the following error estimate

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣
H +

∣∣υn − υhk
n

∣∣
V
+
∣∣un − uhk

n

∣∣
V

+
∣∣φn − φhk

n

∣∣
W

+
∣∣ζn − ζhkn

∣∣
L2(Γ3)

}
≤ c (h+ k) . (5.37)

Proof. Under assumptions (5.3) and (5.4), we can apply the standard theory of finite element interpolation
(see for example Braess, 2007 and Sofonea et al., 2005) to see that

∣∣u0 − uh
0

∣∣
V
≤ ch |u0|H2(Ω)d ,
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max
0≤n≤N

|σn − PHhσn|H ≤ ch |σ|C(0,T ;H1(Ω)d×d) ,

max
0≤n≤N

inf
υh∈V h

∣∣υn − υh
∣∣
V
≤ ch |υ|C(0,T ;H2(Ω)d) ,

max
0≤n≤N

inf
υh∈V h

∣∣υn − υh
∣∣
L2(Γ3)d

≤ ch2 |υ|C(0,T ;H2(Γ3)d)
,

max
0≤n≤N

inf
ϕh∈Wh

∣∣φn − ϕh
∣∣
W

≤ ch |φ|C(0,T ;H2(Ω)) .

Combining the previous estimates and (5.5) it leads to (5.37).□

6. Conclusion

This paper presents a model of the quasistatic contact process between an electro-viscoelastic body and a
foundation. The contact was modeled by normal compliance with wear. The proof of the existence of a unique
weak solution to the model has been obtained by using arguments on elliptic variational inequalities. A fully
discrete scheme is used to approach the problem and an optimal order error estimate. A numerical algorithm
which combines the backward Euler difference method with the finite elements method. Finally, it may be
interesting to incorporate control mechanisms into the model and study the related optimal control problem.
Also, the problem is relatively easy to set experimentally, and it may provide an effective way to determine
some of the constants associated with the contact process, to be used in more complex physical settings.
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abstract

In this paper, we consider the influence of imperfect vaccination on the spread of infectious diseases in an
age-structured population. The benefits of vaccination, even if not perfect, generally outweigh the risks
of severe diseases. In a mathematical system, we consider the compartment of susceptible s, vaccinated
v and infected i individuals with an age structure.
The proposed model is globally analyzed by introducing total trajectories and employing a suitable Lya-
punov functional. To illustrate our theoretical findings, we include numerical simulations at the end of
the paper.
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1. Introduction

Since its earliest applications, vaccination has been a highly effective strategy in preventing and controlling the
spread of infectious diseases. This medical intervention not only plays a crucial role in individual and collective
protection by stimulating the immune system against potentially devastating pathogens but has also been a
subject of in-depth research, notably through mathematical modeling. This research aims to understand its
impact on the dynamics of disease transmission within populations.

The importance of vaccination in containing the spread of infectious diseases cannot be overstated. Diseases
like measles, polio, and influenza historically caused widespread devastation before the advent of vaccination
programs. A notable success is the eradication of smallpox in the 1980s through a coordinated global vaccination
campaign. These successes demonstrate that vaccination not only prevents disease in vaccinated individuals but
also interrupts the chain of transmission, providing protection to unvaccinated populations, including vulnerable
individuals who cannot be vaccinated for medical reasons.

The use of mathematical models in vaccination research has proved to be a valuable tool. It helps anticipate
patterns of disease spread, assess the impact of vaccination campaigns, and design informed public health
policies, we cite for example papers Adimy et al., 2022; Castillo-Chávez et al., 1989; Diekmann and Heesterbeek,
2000; Ismail and Touaoula, 2018.
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Higher school of Management, Tlemcen, Algeria, f.hathout@esm-tlemcen.dz
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While vaccines are recognized for reducing or eliminating infection rates, it’s crucial to acknowledge that
not all vaccines achieve 100% effectiveness Galazka et al., 1995; Grenfell and Anderson, 1989; Hethcote, 2000;
Janaszek et al., 2003; Mossong et al., 2000; Scherer and McLean, 2002. Recent clinical studies have focused
on understanding the impact of imperfect vaccines, characterized by waning or incomplete immunity, in con-
trolling infectious disease transmission. These studies aim to answer key questions, including the proportion
of susceptible individuals requiring immunization, the consequences of incomplete vaccine protection, and the
significance of vaccine-induced immunity waning over time.

Vaccination programs offer both direct and indirect protection against infectious diseases 1; Cai et al., 2013,
2017; Feng et al., 2020. Direct protection lowers the risk of infection in vaccinated individuals, while indirect
protection limits transmission within populations. Various vaccine models, encompassing perfect and imperfect
vaccines, have been explored, including all-or-nothing, leaky, and waning vaccines Mclean and Blower, 1993.

Numerous investigations have independently explored models of all-or-nothing, leaky, and waning vaccines
for specific diseases. For example, Kanaan et al. devised a framework to examine the effectiveness of waning
pertussis vaccines, demonstrating the potential to make inferences regarding the diminishing effects of these
vaccines Kanaan and Farrington, 2002. Shim et al. employed dynamic epidemiological models for both all-or-
nothing and leaky vaccines, emphasizing the critical role of accurately parameterizing vaccine effectiveness for
robust model predictions Shim and Galvani, 2012. In a comprehensive study, Magpantay et al. delved into
all-or-nothing, leaky, and waning vaccine models, investigating the variations in disease outcomes attributable
to these different vaccine types Magpantay et al., 2014.

Studies have individually investigated these models for diseases like pertussis, measles, and rubella, with
researchers assessing efficacy using dynamic epidemiological models. However, amidst the ongoing COVID-19
pandemic, vaccine prioritization discussions have primarily focused on all-or-nothing and leaky vaccine models,
neglecting the consideration of waning vaccines Bubar et al., 2020; Buckner et al., 2020; Magpantay et al., 2014.
This underscores the evolving challenges and the need for a comprehensive understanding of vaccine dynamics
in the current global health landscape.

Imperfect vaccination can manifest in various forms, and here are some common types:

Partial Immunity: Some individuals may develop partial immunity after vaccination, meaning they are
not entirely protected against the disease, but the severity of the infection can be reduced.

Limited Duration of Immunity: In some cases, immunity acquired through vaccination may decrease
over time, eventually requiring regular boosters to maintain adequate protection.

Variable Effectiveness: The effectiveness of a vaccine can vary based on various factors such as age, the
individual’s overall health, and adherence to recommended vaccination schedules.

Protection Against Certain Serotypes: Some vaccines may offer protection against certain serotypes
of pathogens, but not all. This can lead to infections by uncovered strains.

Rare Risks of Post-Vaccination Infection: While vaccines are designed to prevent infections, there
may be rare cases where a vaccinated person still contracts the disease. However, the severity of the infection
is often reduced in these individuals.

Viral Adaptation: Some viruses can undergo mutations over time, potentially reducing the effectiveness
of vaccines against emerging strains. This may require regular adjustments to vaccine formulations.

Variable Immune Responses: Individuals may have different immune responses to vaccination due to
genetic or environmental factors, leading to varying levels of protection.

It is important to note that, despite these imperfections, vaccination remains an essential tool for preventing
and controlling the spread of infectious diseases. The benefits of vaccination, even if not perfect, generally
outweigh the risks of severe diseases.

In Hathout et al., 2022, we considered a protective compartment, incorporating various aspects such as
vaccination, within an SI model. The model construction implies that the protection (or vaccination) was
perfect, as there was no transition of protected individuals to the infected compartment (perfect protection).
The results are obtained based on the basic reproduction number R0. In this work, we will retain the same
model while introducing an interaction between the i-class and v-class of the vaccinated. This implies that
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vaccination is not perfect:





∂s(t, a)

∂t
+

∂s(t, a)

∂a
= −(µs(a) + δ(a))s(t, a)− βs(a)s(t, a)J(t), t > 0,

∂v(t, a)

∂t
+

∂v(t, a)

∂a
= −(µv(a) + k(a))v(t, a)− βv(a)v(t, a)J(t), t > 0, a > 0,

∂i(t, a)

∂t
+

∂i(t, a)

∂a
= −(µi(a) + q(a))i(t, a), t > 0, a > 0,

s(t, 0) = A+ (1− ρ)

∫ ∞

0

k(a)v(t, a)da, t > 0,

v(t, 0) =

∫ ∞

0

δ(a)s(t, a)da+ ρ

∫ ∞

0

k(a)v(t, a)da, t > 0,

i(t, 0) = J(t)

∫ ∞

0

(βs(a)s(t, a) + βv(a)v(t, a)) da, t > 0,

J(t) =

∫ ∞

0

θ(a)i(t, a)da,

(1)

with initial conditions:

s(0, .) = s̄(.) ∈ L1
+(R+), v(0, ·) = v̄(·) ∈ L1

+(R+), i(0, .) = ī(·) ∈ L1
+(R+).

s(t, a), v(t, a) and i(t, a) are respectively the population densities of susceptible, protected and infected indi-
viduals, at time t with age a. Here, the age represents the time spent in each class. The functions µs(·), µv(·)

Figure 1: Diagram flux of the system (1).

and µi(·) are the age-dependent per capita death for susceptible, infected, protected populations, respectively,
with age a. The parameter ρ is the probability of returning again to the v-class, more precisely, it is the spe-
cific protection rate which highlights the concerned persons for the re-protection. The constant A represents
the entering flux into the s-class. The functions δ(·), k(·) are, respectively, the protection rate, removing from
v-class to s-class (rate of losing protection) and βs(·), βv(·) are transmission rates. q(.) is the recovering rate
after spending a time in i-class, θ(.) represents the infectivity rate for an arbitrary infected person. See Figure
1.
We organize this research in the following form : After presenting the assumptions about the model data in
the Preliminaries section, we will provide Volterra formulation for problem (1).We ensure the existence of a
global compact attractor in section 4. Section 5 will offer the system of total trajectories that will enable us to
study the global stability of solutions. Subsection 6.1 is dedicated to demonstrating the global stability of the
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trivial equilibrium (which always exists) in the case of R0 ≤ 1. In subsection 6.2, we will discuss the emergence
of the positive (endemic) equilibrium and the persistence of the disease, where R0 > 1, as well as its global
stability through an appropriate Lyapunov function. Numerical simulation plays a crucial role in validating and
illustrating theoretical findings in such studies. For example, in a recently published paper Benchaira et al.,
2024, the authors in this paper show, by simulation, that the newly proposed estimator behaves well both in
terms of bias and mean squared error. Similarly, in our work, theoretical results will be confirmed through
numerical simulation examples, highlighting the interplay between theory and computation in epidemiological
research. Note that the theorems and proofs stated in Hathout et al., 2022 will not be reiterated
here.

2. Preliminaries

We assume that:

(H1) All the parameters mentioned in model (1) are assumed to be positive, we also assume that µs, µv, µi, q, θ ∈
L∞
+ (R+) \ {0L∞} . In addition

M := min

{
ess inf

a∈R+

{µs(a)}, ess inf
a∈R+

{µv(a)}, ess inf
a∈R+

{µi(a)}
}

> 0.

(H2) δ, k, βs and βv are positive, Lipschitz continuous functions in R+, with βs, βv ∈ L1(R+) ∩ L∞(R+).

In addition, we set the functional space for system (1)

X+ := L1
+

(
R+
)
× L1

+

(
R+
)
× L1

+

(
R+
)
,

which is the positive cone of
X := L1

(
R+
)
× L1

(
R+
)
× L1

(
R+
)
,

equipped with the norm

∥∥(s(t, .), v(t, .), i(t, .)
)∥∥

X
=

∫ ∞

0

|s (t, a)| da+

∫ ∞

0

|v (t, a)| da+

∫ ∞

0

|i (t, a)| da.

The following theorem guarantees existence and uniqueness of solutions for (1):

Theorem 2.1. Let x0 = (s̄(.), v̄(.), ī(.)) ∈ X+, then there exists a unique nonnegative solution (s(.), v(.), i(.)) ∈
C(R+, L1(R+))× C(R+, L1(R+))× C(R+, L1(R+)) to system (1).

Proof. By applying the Banach fixed point method we can demonstrate existence and uniqueness of the non-
negative solution to (1) for any positive initial condition. This procedure is used in Bentout and Touaoula,
2015 and could be applied here.

3. Volterra integral equation

By the characteristics method Webb, 1985, the PDE’s system (1) can be expressed by Volterra equation as the
following:

s(t, a) =





s(t− a, 0)πs(a)Γs(t− a, a), t > a ≥ 0,

s̄(a− t) πs(a)Γs(t−a,a)
πs(a−t)Γs(t−a,a−t) , a ≥ t ≥ 0,

with

Γs(t, a) = exp

{
−
∫ a

0

βs(σ)J(t+ σ)dσ

}
, πs(a) = exp

{
−
∫ a

0

(µs(σ) + δ(σ)) dσ

}
,

v(t, a) =





v(t− a, 0)πv(a)Γv(t− a, a), t > a ≥ 0,

v̄(a− t) πv(a)Γv(t−a,a)
πv(a−t)Γv(t−a,a−t) , a ≥ t ≥ 0,

where

Γv(t, a) = exp

{
−
∫ a

0

βv(σ)J(t+ σ)dσ

}
, πv(a) = exp

{
−
∫ a

0

(µv(σ) + k(σ))dσ

}
.
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We also have

i(t, a) =





i(t− a, 0)πi(a), t > a ≥ 0,

ī(a− t) πi(a)
πi(a−t) , a ≥ t ≥ 0,

with

πi(a) = exp

{
−
∫ a

0

(µi(σ) + q(σ))dσ

}
.

4. Global compact attractor

In the subsequent we set

EM =

{
(s, v, i) ∈ X+ :

∫ ∞

0

s (t, a) da+

∫ ∞

0

v (t, a) da+

∫ ∞

0

i (t, a) da ≤ A

M

}
.

It is not difficult to show that λ is positively invariant. We can also prove that there exists a continuous semi-
flow Φ(t, x0) = Φt(x0) such that Φt(x0) = (s(t, .), v(t, .), i(t, .)) with t ∈ R+, x0 ∈ X+, where (s, v, i) is solution
of (1). Extracting some properties on the set EM and the semi-flow {Φt(x0)}t∈R+ as well by the following
proposition:

Proposition 4.1. Hathout et al., 2022 Let Φt be the semi-flow of the system (1), then we have the following
aspects

(i) {Φt(x0)}t∈R+ is point dissipative. Further, EM attracts all point in X+

(ii) {Φt(x0)}t∈R+ ∈ EM for all t ⩾ 0 and x0 ∈ EM .

Theorem 4.2. Hathout et al., 2022 The semi-flow {Φt(x0)}t∈R+ engendered by system (1) is asymptotically
smoothMagal and Thieme, 2004; Magal and Zhao, 2005. In addition, Φt(x0) has a compact attractor B
restrained to X+. Moreover B attracts all bounded sets of X+.

5. Total trajectories

A total trajectory is a function ϕ that satisfies ϕ(t + r) = Φ(t, ϕ(r)) for all t ∈ R and r ≥ 0. Thus, for
ϕ(t) = (s(t, .), v(t, .), i(t, .)), t ∈ R and a ≥ 0, we define a total trajectory as





s(t, a) = s(t− a, 0)πs(a)Γs(t− a, a),

Γs(t, a) = exp

{
−
∫ a

0

βs(σ)J(t+ σ)dσ

}
,

v(t, a) = v(t− a, 0)πv(a)Γv(t− a, a),

Γv(t, a) = exp

{
−
∫ a

0

βv(σ)J(t+ σ)dσ

}
,

i(t, a) = i(t− a, 0)πi(a),

J(t) =

∫ ∞

0

θ(a)i(t, a)da,

where s(t, 0), v(t, 0) and i(t, 0) are defined in (1).

Lemma 5.1. Hathout et al., 2022 For all x0 := (s̄(.), v̄(.), ī(.)) ∈ B, the following estimates hold true.

∫ ∞

0

s(t, a)da+

∫ ∞

0

v(t, a)da+

∫ ∞

0

i(t, a)da ≤ A

M
.

J(t) ≤ ||θ||∞
A

M
,

for all t ∈ R and there exist positive constants c1 and c2 such that

s(t, a) ≥ c1πs(a),
v(t, a) ≥ c2πv(a),

for all t ∈ R and a ≥ 0.
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6. Equilibria

6.1. Disease free equilibrium

In this section we prove that model (1) has always the trivial equilibrium which coincides with that of Hathout
et al., 2022. Then, we can use the same arguments to prove the existence as well as the global stability of this
state:

Theorem 6.1. The disease free equilibrium is defined by E0 = (s0(a), p0(a), 0), where





s0(a) = s0(0)πs(a),

p0(a) = p0(0)πv(a), a > 0,

with





s0(0) = A+ (1− ρ)p0(0)
∫∞
0

k(a)πv(a)da,

p0(0) =
A
∫∞
0

δ(a)πs(a)da

1−
∫∞
0

k(a)πv(a)da((1− ρ)
∫∞
0

δ(a)πs(a)da+ ρ)
.

Hence, we can define the basic reproduction rate R0 for model (1) by:

R0 =

∫ ∞

0

θ(a)πi(a)da

∫ ∞

0

(βs(a)s0(a) + βv(a)v0(a)) da.

Remark that

R0 = R̃0 +

∫ ∞

0

θ(a)πi(a)da

∫ ∞

0

βv(a)v0(a)da.

where

R̃0 =

∫ ∞

0

θ(a)πi(a)da

∫ ∞

0

βs(a)s0(a)da

is the basic reproduction rate of model 1.1 in Hathout et al., 2022 and so,

R0 > R̃0

In a model of imperfect vaccination, vaccinated individuals can still become infected, allowing the infection
to spread among them. This increases the proportion of the susceptible population, leading to a higher R0

compared to a perfect vaccination model, where vaccinated individuals are fully protected. While vaccination
reduces the likelihood of infection, the persistence of susceptibility within the vaccinated population limits its
control effect. Therefore, higher vaccination rates are required to control the infection in the case of imperfect
vaccination.

Theorem 6.2. Assume that R0 ≤ 1. The disease free equilibrium E0 is globally stable in X+.

6.2. Endemic equilibrium

The main objective of this section is to show the existence and global stability of the endemic equilibrium in
the case where R0 > 1.
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6.2.1 Existence

In this subsection our focus is on analyzing the existence of positive endemic equilibrium for model (1). This
state verifies the following system:





ds∗(a)
da

= −(µs(a) + δ(a))s∗(a)− βs(a)s
∗(a)J∗,

dv∗(a)
da

= −(µv(a) + k(a))v∗(a)− βv(a)v
∗(a)J∗, a > 0,

di∗(a)
da

= −(µi(a) + q(a))i∗(a), a > 0,

s∗(0) = A+ (1− ρ)

∫ ∞

0

k(a)v∗(a)da,

v∗(0) =
∫ ∞

0

δ(a)s∗(a)da+ ρ

∫ ∞

0

k(a)v∗(a)da,

i∗(0) = J∗
∫ ∞

0

(βs(a)s
∗(a) + βv(a)v

∗(a)) da,

J∗ =

∫ ∞

0

θ(a)i∗(a)da,

(2)

which has the solution 



s∗(a) = s∗(0)πs(a)e
−J∗ ∫ a

0
βs(σ)dσ,

v∗(a) = v∗(0)πv(a)e
−J∗ ∫ a

0
βv(σ)dσ,

i∗(a) = i∗(0)πi(a), a > 0.

(3)

Theorem 6.3. If R0 > 1, there exists the unique positive equilibrium denoted E∗ = (s∗(a), v∗(a), i∗(a)).

Proof. Firstly, using the equations of (2) and (3) we have

v∗(0) =

∫ ∞

0

δ(a)s∗(a)da+ ρ

∫ ∞

0

k(a)v∗(a)da

= s∗(0)
∫ ∞

0

δ(a)πs(a)e
−J∗ ∫ a

0
βs(σ)dσda+ ρv∗(0)

∫ ∞

0

k(a)πv(a)e
−J∗ ∫ a

0
βv(σ)dσda

=

(
A+ (1− ρ)v∗(0)

∫ ∞

0

k(a)πv(a)e
−J∗ ∫ a

0
βv(σ)dσda

)∫ ∞

0

δ(a)πs(a)e
−J∗ ∫ a

0
βs(σ)dσda

+ ρv∗(0)
∫ ∞

0

k(a)πv(a)e
−J∗ ∫ a

0
βv(σ)dσda,

and thus

v∗(0) =
A
∫∞
0

δ(a)πs(a)e
−J∗ ∫ a

0
βs(σ)dσda

1−
∫∞
0

k(a)πv(a)e
−J∗ ∫ a

0
βv(σ)dσda

(
(1− ρ)

∫∞
0

δ(a)πs(a)e
−J∗ ∫ a

0
βs(σ)dσda+ ρ

) (4)

Next, suppose that i∗(0) > 0. Using the expression of J∗ in (2) and dividing the following equation i∗(0) =

J∗
∫ ∞

0

(βs(a)s
∗(a) + βv(a)v

∗(a)) da by i∗(0) we obtain

1 =

∫ ∞

0

θ(a)πi(a)da

∫ ∞

0

(
βs(a)s

∗(0)πs(a)e
−J∗ ∫ a

0
βs(σ)dσ + βv(a)v

∗(0)πv(a)e
−J∗ ∫ a

0
βv(σ)dσ

)
da.

By employing the expression of s∗(0) in (2), the last equation becomes:

1 = θ̃

∫ ∞

0

(
βs(a)

(
A+ (1− ρ)k̃v∗(0)

)
πs(a)e

−i∗(0)θ̃β̃s(a) + βv(a)v
∗(0)πv(a)e

−i∗(0)θ̃β̃v(a)
)
da, (5)

where k̃ =

∫ ∞

0

k(a)πv(a)e
−J∗ ∫ a

0
βv(σ)dσda; θ̃ =

∫ ∞

0

θ(a)πi(a)da and β̃s,v(a) =

∫ a

0

βs,v(σ)dσ.

Now, using the expression of v∗(0) in (4) and the fact that J∗ = i∗(0)θ̃, we can rewrite problem (5) as the
following :

1 = F (i∗(0)),

We can easily prove that F is a decreasing function. Furthermore, observe that F (0) = R0 and lim
y→+∞

F (y) = 0.

Therefore, problem (5) has a unique positive solution if R0 > 1. The proof is reached.
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6.2.2 Main results of uniform persistence

For the purpose of the well posedness of the Lyapunov function obtained in the next section we will show the
persistence result. So, we define the following sets:

X0 =

{
(s̄(·), v̄(·), ī(·)) ∈ X+;

∫ ∞

0

θ(a)̄i(a)da > 0

}

∂X0 =

{
(s̄(·), v̄(·), ī(·)) ∈ X+;

∫ ∞

0

θ(a)̄i(a)da = 0

}
.

So, we write X+ = X0 ∪ ∂X0. For x0 = (s̄(·), v̄(·), ī(·)) , we also denote

M∂ = {x0 ∈ ∂X0; Φt(x0) ∈ ∂X0, for all t ≥ 0}.

We have the following theorems:

Lemma 6.4. The subset X0 is positively invariant under the semi-flow {Φt(x0)}t∈R+ . Furthermore, the disease
free equilibrium is globally asymptotically stable for the semi-flow {Φt(x0)}t∈R+ restricted to M∂ .

Theorem 6.5. Smith and Zhao, 2001 Assume that R0 > 1, the semi-flow {Φt(x0)}t∈R+ is uniformly per-
sistent with respect to (X0, ∂X0), i.e., there exists ϵ > 0 which is independent of initial values such that
lim inf
t→∞

∫∞
0

θ(a)i(t, a)da ≥ ϵ for all x0 ∈ X0. Moreover, there exists a compact subset B0 of X0 which is a global

attractor for {Φt(x0)}t∈R+ in X0.

Lemma 6.6. For all x0 ∈ B0, a > 0 and t ∈ R, there exist positive constant c such that:

s(t, a)

s∗(a)
> c,

v(t, a)

v∗(a)
> c,

i(t, a)

i∗(a)
> c.

6.2.3 Global stability

Theorem 6.7. Assume that R0 > 1. The endemic equilibrium is globally stable in B0 ⊂ X0.

Proof. We define H(x) = x− ln(x)− 1 and consider the following Lyapunov functional:

W (t) =

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
ϕs(a)da+

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
ϕv(a)da+

∫ ∞

0

H

(
i(t, a)

i∗(a)

)
ϕi(a)da

with ϕs(a) =
s∗(a)
i∗(0)

, ϕv(a) =
v∗(a)
i∗(0)

, ϕi(a) =

∫∞
a

θ(s)i∗(s)ds∫∞
0

θ(a)i∗(a)da
, a ≥ 0

Note that the functions ϕs, ϕv and ϕi verify the following problems:





ϕ′
s(a) = −(µs(a) + δ(a) + βs(a)J

∗)
s∗(a)
i∗(0)

,

ϕs(0) =
s∗(0)
i∗(0)

,





ϕ′
v(a) = −(µv(a) + k(a) + βv(a)J

∗)
v∗(a)
i∗(0)

ϕv(0) =
v∗(0)
i∗(0)

,





ϕ′
i(a) = − θ(a)i∗(a)∫∞

0
θ(a)i∗(a)da

,

ϕi(0) = 1

Set

Ws(t) :=

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
ϕs(a)da, Wv(t) :=

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
ϕv(a)da,

Wi(t) :=

∫ ∞

0

H

(
i(t, a)

i∗(a)

)
ϕi(a)da.

Using Lemma 3.3 in Hathout et al., 2022, we obtain

W ′
s(t) = ϕs(0)H

(
s(t, 0)

s∗(0)

)
+

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
ϕ′
s(a)da− J(t)

∫ ∞

0

βs(a)ϕs(a)
s(t, a)

s∗(a)
H ′
(
s(t, a)

s∗(a)

)
da

+ J∗
∫ ∞

0

βs(a)ϕs(a)
s(t, a)

s∗(a)
H ′
(
s(t, a)

s∗(a)

)
da
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W ′
v(t) = ϕv(0)H

(
v(t, 0)

v∗(0)

)
+

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
ϕ′
v(a)da− J(t)

∫ ∞

0

βv(a)ϕv(a)
v(t, a)

v∗(a)
H ′
(
v(t, a)

v∗(a)

)
da

+ J∗
∫ ∞

0

βv(a)ϕv(a)
v(t, a)

v∗(a)
H ′
(
v(t, a)

v∗(a)

)
da

W ′
i (t) = ϕi(0)H

(
i(t, 0)

i∗(0)

)
+

∫ ∞

0

H

(
i(t, a)

i∗(a)

)
ϕ′
i(a)da

Using the fact that H ′(x) = 1− 1

x
, we get

W ′
s(t) +W ′

v(t) = ϕs(0)H

(
s(t, 0)

s∗(0)

)
+

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
ϕ′
s(a)da+ ϕv(0)H

(
v(t, 0)

v∗(0)

)

+ J∗
∫ ∞

0

(
βs(a)ϕs(a)

(
s(t, a)

s∗(a)

)
+ βv(a)ϕv(a)

(
v(t, a)

v∗(a)

))
da

− J∗
∫ ∞

0

(βs(a)ϕs(a) + βv(a)ϕv(a)) da+ J(t)

∫ ∞

0

(βs(a)ϕs(a) + βv(a)ϕv(a)) da

− J(t)

∫ ∞

0

(
βs(a)ϕs(a)

(
s(t, a)

s∗(a)

)
+ βv(a)ϕv(a)

(
v(t, a)

v∗(a)

))
da,

+

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
ϕ′
v(a)da

In addition, we have

J(t)

∫ ∞

0

(βs(a)ϕs(a) + βv(a)ϕv(a)) da =
J(t)

J∗

∫∞
0

(βs(a)s
∗(a) + βv(a)v

∗(a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da
=

J(t)

J∗ .

J(t)

∫ ∞

0

(
βs(a)ϕs(a)

(
s(t, a)

s∗(a)

)
+ βv(a)ϕv(a)

(
v(t, a)

v∗(a)

))
da =

J(t)

J∗

∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da
,

J∗
∫ ∞

0

(βs(a)ϕs(a) + βv(a)ϕv(a)) da =
J∗

J∗

∫∞
0

βs(a)s
∗(a)da∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

= 1,

J∗
∫ ∞

0

(
βs(a)ϕs(a)

(
s(t, a)

s∗(a)

)
+ βv(a)ϕv(a)

(
v(t, a)

v∗(a)

))
da =

∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da
.

Since W ′ = W ′
s +W ′

v +W ′
i and

H

(
i(t, 0)

i∗(0)

)
= H

(
J(t)

J∗

∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da

)

+
J(t)

J∗

∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

βs(a)s∗(a)da

− ln
J(t)

J∗ − ln

∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

βs(a)s∗(a)da
− 1,

it follows that

W ′(t) = ϕs(0)H

(
s(t, 0)

s∗(0)

)
+

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
ϕ′
s(a)da+ ϕv(0)H

(
v(t, 0)

v∗(0)

)

+

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
ϕ′
v(a)da+

∫ ∞

0

H

(
i(t, a)

i∗(a)

)
ϕ′
i(a)da

+ H

(∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da

)
+H

(
J(t)

J∗

)

On the other hand,

H

(
s(t, 0)

s∗(0)

)
= H

(
A

s∗(0)
· 1 + (1− ρ)

∫∞
0

k(a)v∗(a)da

s∗(0)

∫∞
0

k(a)v(t, a)da∫∞
0

k(a)v∗(a)da

)
.
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Since H is convex and
A

s∗(0)
+

(1− ρ)
∫∞
0

k(a)v∗(a)da

s∗(0)
= 1 then,

H

(
s(t, 0)

s∗(0)

)
≤ A

s∗(0)
H(1)︸ ︷︷ ︸
=0

+
(1− ρ)

∫∞
0

k(a)v∗(a)da

s∗(0)
H




∫∞
0

k(a)v∗(a)
v(t, a)

v∗(a)
da

∫∞
0

k(a)v∗(a)da


 .

By Jensen inequality, this last inequality leads to

H

(
s(t, 0)

s∗(0)

)
≤ (1− ρ)

s∗(0)

∫ ∞

0

k(a)v∗(a)H

(
v(t, a)

v∗(a)

)
da.

H

(
v(t, 0)

v∗(0)

)
= H

(
1

v∗(0)

(∫ ∞

0

δ(a)s(t, a)da+ ρ

∫ ∞

0

k(a)v(t, a)da

))
,

= H

(∫∞
0

δ(a)s∗(a)da

v∗(0)

∫∞
0

δ(a)s(t, a)da∫∞
0

δ(a)s∗(a)da
+ ρ

∫∞
0

k(a)v∗(a)da

v∗(0)

∫∞
0

k(a)v(t, a)da∫∞
0

k(a)v∗(a)da

)
,

≤
∫∞
0

δ(a)s∗(a)da

v∗(0)
H




∫∞
0

δ(a)s∗(a)
s(t, a)

s∗(a)
da

∫∞
0

δ(a)v∗(a)da




+ ρ

∫∞
0

k(a)v∗(a)da

v∗(0)
H




∫∞
0

k(a)v∗(a)
v(t, a)

v∗(a)
da

∫∞
0

k(a)v∗(a)da


 ,

≤ 1

v∗(0)

∫ ∞

0

δ(a)s∗(a)H

(
s(t, a)

s∗(a)

)
da+

ρ

v∗(0)

∫ ∞

0

k(a)v∗(a)H

(
v(t, a)

v∗(a)

)
da.

H

(
J(t)

J∗

)
= H

(∫∞
0

θ(a)i(t, a)da∫∞
0

θ(a)i∗(a)da

)
= H




∫∞
0

θ(a)i∗(a)
i(t, a)

i∗(a)
da

∫∞
0

θ(a)i∗(a)da




≤

∫∞
0

θ(a)i∗(a)H

(
i(t, a)

i∗(a)

)
da

∫∞
0

θ(a)i∗(a)da
.

H

(∫∞
0

(βs(a)s(t, a) + βv(a)v(t, a)) da∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da

)
≤

∫∞
0

βs(a)s
∗(a)H

(
s(t, a)

s∗(a)

)
da

∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da

+

∫∞
0

βv(a)v
∗(a)H

(
v(t, a)

v∗(a)

)
da

∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da

Finally, we obtain

W ′(t) ≤
∫ ∞

0

H

(
s(t, a)

s∗(a)

)(
ϕ′
s(a) +

βs(a)s
∗(a)∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

+
ϕv(0)

v∗(0)
δ(a)s∗(a)

)
da

+

∫ ∞

0

H

(
v(t, a)

v∗(a)

)(
ϕ′
v(a) +

βv(a)v
∗(a)∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

+ τk(a)v∗(a)

)
da

+

∫ ∞

0

H

(
i(t, a)

i∗(a)

)(
ϕ′
i(a) +

θ(a)i∗(a)∫∞
0

θ(a)i∗(a)da

)

︸ ︷︷ ︸
=0

da.



International Journal of Applied Mathematics and Simulation. Issue.01, Volume.02, pages.17-32. Feb 2025 27

where

τ = ρ
ϕv(0)

v∗(0)
+ (1− ρ)

ϕs(0)

s∗(0)
= ρ

1

v∗(0)
v∗(0)
i∗(0)

+ (1− ρ)
1

i∗(0)
=

1

i∗(0)
,

Let

Ls(a) := ϕ′
s(a) +

βs(a)s
∗(a)∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

+
ϕv(0)

v∗(0)
δ(a)s∗(a)

Replacing ϕ′
s by its expression we get:

L(a) = −s∗(a)
i∗(0)

(µs(a) + δ(a) + βs(a)J
∗) +

βs(a)s
∗(a)∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

+
ϕv(0)

v∗(0)
δ(a)s∗(a),

= − 1

i∗(0)
µs(a)s

∗(a) + δ(a)s∗(a)

(
ϕv(0)

v∗(0)
− 1

i∗(0)

)

+ βs(a)s
∗(a)

(
1∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

− J∗

i∗(0)

)
,

employing the equations of i∗(0) and ϕv(0) we obtain





1∫∞
0

(βs(a)s∗(a) + βv(a)v∗(a)) da
− J∗

i∗(0)
= 0,

ϕv(0)

v∗(0)
− 1

i∗(0)
=

1

v∗(0)
v∗(0)
i∗(0)

− 1

i∗(0)
= 0,

then

Ls(a) = − 1

i∗(0)
µs(a)s

∗(a)

Similarly, we prove that :

Lv(a) = ϕ′
v(a) +

βv(a)v
∗(a)∫∞

0
(βs(a)s∗(a) + βv(a)v∗(a)) da

+
k(a)v∗(a)

i∗(0)
,

= −µv(a)
v∗(a)
i∗(0)

.

Finally, the derivative W ′ verifies the following inequality

W ′(t) ≤ − 1

i∗(0)

∫ ∞

0

H

(
s(t, a)

s∗(a)

)
µs(a)s

∗(a)da− 1

i∗(0)

∫ ∞

0

H

(
v(t, a)

v∗(a)

)
µv(a)v

∗(a)da,

≤ 0.

We know that
d

dt
W (t) = 0 implies that s(t, a) = s∗(a) and v(t, a) = v∗(a) for all t ∈ R and a ≥ 0. We

replace these into the first equation of (1), we conclude that J(t) = J∗ and so i(t, 0) = i∗(0). hence, it follows

that i(t, a) = i∗(a) for all t ∈ R and a ≥ 0. Therefore, the largest invariant set with the property
d

dt
W (t) = 0

is
{(

s∗(a), v∗(a), i∗(a)
)}

. Finally, by employing the same argument as in the proof of Theorem 4.1 in ST we
reach the result.

7. Discussion

In this study, we investigated the model of imperfect vaccination, obtaining results based on the values of the
basic reproduction number, R0. Specifically, if R0 ≤ 1, we observe the extinction of the disease, as expressed
by the stability of the unique equilibrium (trivial equilibrium). Conversely, when R0 > 1, the disease persists
in the population, as indicated by the stability of the second equilibrium (positive equilibrium).

By considering the same set of parameters as in Hathout et al., 2022, the numerical results insure the
threshold dynamics obtained in the theoretical part. Indeed, in Fig.2 we remark that the extinction scenario
of the infection holds, wherein this case we obtained that R0 = 2.7222.10−8 < 1, which confirms Theorem
6.2. Besides, in Fig.3, we remark the persistence of infection to a positive value, where it is obtained that
R0 = 7.0118 > 1. This figure ensures the main result of Theorem 6.7.
The issues related to imperfect vaccination are diverse and can pose challenges in the fight against infectious
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Figure 2: The global stability of the disease free equilibrium in the case of R0 = 2.7222.10−8 < 1.

diseases. Some of these problems include the possibility of developing partial immunity after vaccination,
the limited duration of immunity, the variable effectiveness of vaccines, selective protection against certain
serotypes of pathogens, rare risks of post-vaccination infection, viral adaptation, and variable immune responses
in individuals.

Partial immunity may leave some individuals vulnerable to infection, although the severity of the disease
may be reduced. Additionally, the waning immunity over time requires regular boosters to maintain adequate
protection. The variable effectiveness of vaccines, influenced by factors such as age and general health, can lead
to disparities in protection within the population.

Furthermore, the type of vaccination strategy plays a critical role in the success of vaccination efforts.
Systematic vaccination campaigns, as seen with diseases like measles, often result in higher coverage and more
consistent protection, leading to herd immunity. In contrast, non-systematic vaccination, such as for seasonal
flu, may require continuous efforts and adaptation to address seasonal variation and emerging strains, often
with lower overall effectiveness in the long run.

To overcome these problems, several solutions can be considered. Firstly, ongoing research to improve the
duration of vaccine immunity and develop more durable formulations is crucial. Efforts to understand variable
immune responses could allow for vaccine customization based on individual profiles.

Education and communication also play a crucial role. It is important to inform the public about the
benefits of vaccination despite its imperfections, emphasizing that even partial protection can reduce the severity
of diseases and contribute to prevention of spread.
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Figure 3: The global stability of the endemic equilibrium in the case of R0 = 7.0118 > 1.

Continuous surveillance of outbreaks and rapid detection of emerging viral strains are fundamental. This
could lead to swift adjustments of vaccine formulations to maintain effective protection against new variants.

Ultimately, research, education, surveillance, and constant innovation are key elements in addressing issues
associated with imperfect vaccination. By combining these approaches, it is possible to strengthen the fight
against infectious diseases and improve the effectiveness of vaccination programs.
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This paper delves into the forefront of fixed point theory, focusing on recent advancements within the
context of contraction mappings in complex metric spaces. The study introduces a novel perspective
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control function. We provide an example to illustrate our findings.
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1. Introduction and Preliminaries

In recent years, fixed point theory has witnessed a surge of interest and innovation, particularly in the explo-
ration of contraction mappings within the intricate realm of complex metric spaces, see ( Bhatt et al., 2011,
Kang et al., 2013, Kutbi et al., 2013, Ahmad et al., 2013, Manro, 2013, Mohanta and Maitra, 2012, Rouzkard
and Imdad, 2012, Sintunavarat and Kumam, 2012, Sitthikul and Saejung, 2012, Verma and Pathak, 2013).
This paper aims to contribute to this evolving discourse by investigating novel perspectives and advancements
in the field, with a particular focus on the pivotal role of control functions in shaping the dynamics of fixed
point iterations. Firstly, in the preliminary table, we need to define a new partial order relation ≾ on C.
Let C be the set of complex numbers and z1, z2 ∈ C as follows:

z1 ≾ z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

Thus z1 ≾ z2 if one of the following cases is satisfied:

Re(z1) = Re(z2), Im(z1) < Im(z2),

Re(z1) < Re(z2), Im(z1) = Im(z2),

Re(z1) < Re(z2), Im(z1) < Im(z2),

Re(z1) = Re(z2), Im(z1) = Im(z2).

we write z1 ⋨ z2 if z1 ⋨ z2 and z1 ̸= z2 ,and we will write z1 ≺ z2 if only (3) is satisfied.Note that

0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2|,
z1 ≾ z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

0 ≾ z1 ≾ z2 ⇒ |z1| ≤ |z2|.
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Definition 1.1. Azam Azam et al., 2011 Let X be a nonempty set. Suppose that the function d : X ×X →
C,satisfies.
(a) 0 ≾ d(x, y) for all x, y ∈ X and d(x, y) = 0 ⇔ x = y,
(b) d(x, y) = d(y, x), for all x, y ∈ X,
(c) d(x, y) ≾ d(x, z) + d(z, y) for all x, y, z ∈ X.
d is called a complex valued metric in X and The pair (X, d) is called a complex valued metric space.

Example 1.2. Sintunavarat and Kumam, 2012 Let X = C Define the mapping d : X ×X → C by

d (z1, z2) = exp (ik) |z1 − z2|2 ,

where k ∈
[
0, π

2

]
. Then (X, d) is a complex valued metric space.

Definition 1.3. Azam Azam et al., 2011 Suppose that (X, d) be a complex valued metric space and {xn} be
a sequence in X and x ∈ X., We find that
(i) the sequence {xn} converges to x0 ∈ X if for every 0 < c ∈ C, there exists an integer N such that
d(xn, x0) < c for all n ≥ N .
we write xn → x0.
(ii) the sequence {xn} is a Cauchy sequence if for every 0 < c ∈ C, there exists an integer N such that
d(xn, xm) < c for all n,m ≥ N .
(iii) the metric space (X, d) is complete, if every Cauchy sequence in X converges to a point in X.

Lemma 1.4. Azam Azam et al., 2011 Let (X, d) be a complex valued metric space and Let {xn} be a sequence
in X. Then {xn} converge to x0 if and only if |d(xn, x0)| → 0 as n → ∞.

Lemma 1.5. Azam Azam et al., 2011 Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n → ∞,

Lemma 1.6. Azam Azam et al., 2011 let {xn} be a sequence in X and h ∈ [0, 1) .if an = |d(xn, xn+1)| satisfies

an ≤ han−1, for all n ∈ N,

then {xn} is a Cauchy sequence.

2. Main results

Firstly, in this chapter, we will need to utilize the following assumption.
Throughout this work, Let (X, d) be a complex valued metric space and let S, T : X → X .

Proposition 2.1. Let x0 ∈ X and defined the sequence {xn} be defined by

x2n+1 = Sx2n, x2n+2 = Tx2n+1, for all n = 0, 1, 2, ...

Assume that there exists a control function γ : X ×X → [0, 1) satisfying.

γ(TSx, y) ≤ γ(x, y) and γ(x, STy) ≤ γ(x, y)

for all x, y ∈ X. then

γ(x2n, y) ≤ γ(x0, y) and γ(x, x2n+1) ≤ γ(x, x1)

for all x, y ∈ X and n = 0, 1, 2, ...

Proof. let x, y ∈ X and n = 0, 1, 2, ... then we have

γ(x2n, y) = γ(TSx2n−2, y) ≤ γ(x2n−2, y)

= γ(TSx2n−4, y) ≤ ... ≤ γ(x0, y).

Similarly, we have

γ(x, x2n+1) = γ(x, STx2n−1) ≤ γ(x, x2n−1)

= γ(x, STx2n−3) ≤ ... ≤ γ(x, x1).
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Theorem 2.2. Let (X, d) be a complex valued metric space and let S, T : X → X. if there exist the control
function γ : X ×X → [0, 1) such that for all x, y ∈ X:

(a)

γ(TSx, y) ≤ γ(x, y) and γ(x, STy) ≤ γ(x, y);

(b)
γ(x0, x1) < 1, (1)

(c)

d(Sx, Ty) ≾ γ(x, y)
d(x, Sx)d(y, Ty)

1 + d(x, Ty) + d(y, Sx) + d(y, x)
, (2)

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point inX and define the sequence {xn} be defined by x2n+1 = Sx2n and x2n+2 =
Tx2n+1 ,n = 0, 1, 2, ....Now by (2), Then

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1)

≾ γ(x2n, x2n+1)
d(x2n, Sx2n)d(x2n+1, Tx2n+1)

1 + d(x2n, Tx2n+1) + d(x2n+1, Sx2n) + d(x2n+1, x2n)

≾ γ(x2n, x2n+1)
d(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n, x2n+2) + d(x2n+1, x2n+1) + d(x2n+1, x2n)

≾ γ(x2n, x2n+1)
d(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n+1, x2n+2)

≾ γ(x2n, x2n+1)d(x2n, x2n+1),

Taking the modulus, we get

|d(x2n+1, x2n+2)| ≤ γ(x2n, x2n+1)|d(x2n, x2n+1)|.

Now by Proposition 2.1, therefore

|d(x2n+1, x2n+2)| ≤ γ(x0, x2n+1)|d(x2n, x2n+1)|
≤ γ(x0, x1)|d(x2n, x2n+1)|

which yeilds that

|d(x2n+1, x2n+2)| ≤ γ(x0, x1)|d(x2n, x2n+1)|.

Similarly, we get

d(x2n+2, x2n+3) = d(Tx2n+1, Sx2n+2)

≾ γ(x2n+2, x2n+1)
d(x2n+2, Sx2n+2)d(x2n+1, Tx2n+1)

1 + d(x2n+2, Tx2n+1) + d(x2n+1, Sx2n+2) + d(x2n+1, x2n+2)

≾ γ(x2n+2, x2n+1)
d(x2n+2, x2n+3)d(x2n+1, x2n+2)

1 + d(x2n+2, x2n+2) + d(x2n+1, x2n+3) + d(x2n+1, x2n+2)

≾ γ(x2n+2, x2n+1)
d(x2n+2, x2n+3)d(x2n+1, x2n+2)

1 + d(x2n+2, x2n+3)

≾ γ(x2n+2, x2n+1)d(x2n+2, x2n+1),

Taking the modulus, we get

|d(x2n+2, x2n+3)| ≤ γ(x2n+2, x2n+1)|d(x2n+2, x2n+1)|.

Now by Proposition 2.1, therefore

|d(x2n+2, x2n+3)| ≤ γ(x0, x2n+1)|d(x2n+2, x2n+1)|
≤ γ(x0, x1)|d(x2n+2, x2n+1)|

which yeilds that

|d(x2n+2, x2n+3)| ≤ γ(x0, x1)|d(x2n+1, x2n+2)|.
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Since a = γ(x0, x1) < 1,
thus we have,

|d(x2n+2, x2n+3)| ≤ a|d(x2n+1, x2n+2)|,

or in fact

|d(xn, xn+1)| ≤ a|d(xn−1, xn)| for all n ∈ N.

From lemma 1.6,we have {xn} is a Cauchy sequence in (X, d).Since X is complete,there exists u ∈ X such that
xn → u as n → ∞.

Next we show that u is a fixed point of S.
Now by (2) and Proposition 2.1, we can write

d(u, Su) ≾ d(u, Tx2n+1) + d(Tx2n+1, Su)

= d(u, Tx2n+1) + d(Su, Tx2n+1)

≾ d(u, Tx2n+1) + γ(u, x2n+1)
d(u, Su)d(x2n+1, Tx2n+1)

1 + d(u, Tx2n+1) + d(x2n+1, Su) + d(x2n+1, u)

≾ d(u, x2n+2) + γ(u, x1)
d(u, Su)d(x2n+1, x2n+2)

1 + d(u, x2n+2) + d(x2n+1, Su) + d(x2n+1, u)
.

on Making n → ∞,reduces by making the modulus, we get

|d(u, Su)| ≤ µ(u, x1)|d(u, Su)|
≤ (γ(u, x1))|d(u, Su)|
< |d(u, Su)|,

which is contradiction. So, Su = u. Similarly, One can prove that u is a fixed point of T .by (2) and Proposition
2.1, we can write

d(u, Tu) ≾ d(u, x2n+1) + d(x2n+1, Tu)

= d(u, x2n+1) + d(Sx2n, Tu)

≾ d(u, x2n+1) + γ(x2n, u)
d(x2n, Sx2n)d(u, Tu)

1 + d(x2n, Tu) + d(u, Sx2n) + d(x2n, u)

≾ d(u, x2n+1) + γ(x0, u)
d(x2n, x2n+1)d(u, Tu)

1 + d(x2n, Tu) + d(u, x2n+1) + d(x2n, u)
.

on Making n → ∞,reduces to

d(u, Tu) ≾ µ(x0, u)d(u, Tu),

Taking the modulus, we get

|d(u, Tu)| ≤ µ(x0, u)|d(u, Tu)|
≤ (γ(x0, u))|d(u, Tu)|
< |d(u, Tu)|,

which is contradiction. So, Tu = u. We present to prove the uniqueness of the common fixed point of S and
T . For this,Assume that the existence u∗ is a second common fixed point. we have

d(u, u∗) = d(Su, Tu∗)

≾ γ(u, u∗)
d(u, Su)d(u∗, Tu∗)

1 + d(u, Tu∗) + d(u∗, Su) + d(u, u∗)

which implies that

d(u, u∗) = 0.

Thus u = u∗, completing the proof of the theorem.
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Corollary 2.3. Let (X, d) be a complex-valued metric space and let S : X → X. If there exists control function
γ : X ×X → [0, 1) such that for all x, y ∈ X we have

γ(S2x, y) ≤ γ(x, y) and γ(x, S2y) ≤ γ(x, y);

γ(x, y) < 1;

d(Sx, Sy) ⪯ γ(x, y)
d(x, Sy)d(y, Sx)

1 + d(x, Sy) + d(y, Sx) + d(x, y)
;

then S have a unique fixed point.

Proof. Take T = S in Theorem 2.2

Corollary 2.4. Let (X, d) be a complex valued metric space and let S, T : X → X. If there exists constants
γ > 0 such that

γ < 1;

and for all x, y ∈ X we have

d(Sx, Ty) ⪯ γ
d(x, Sy)d(y, Ty)

1 + d(x, Ty) + d(y, Sx) + d(x, y)
;

then S and T have a unique common fixed point.

Proof. Take γ a constant functions in Theorem 2.2.

Example 2.5. Let X = [0, 1] and d : X ×X → C

d(x, y) = |x− y|+ i|x− y|
for all x, y ∈ X. Then (X, d) is a complex metric space. Now we define the mappings S, T : X → X by

S(x) =
x

6
and T (y) =

y

6
.

Consider the functions γ : X ×X → [0, 1)

γ(x, y) =
x2y2

30
.

Clearly γ(x0, x1) < 1.
We satisfy the condition (a)of main theorem 2.2 as follows.

γ(TSx, y) =γ(T (
x

6
), y) = γ(

x

36
, y)

≤ γ(x, y),

That is γ(TSx, y) ≤ γ(x, y), for all x, y ∈ X.
And

γ(x, STy) =γ(x, S(
y

6
)) = γ(x,

y

36
)

≤ γ(x, y),

That is γ(x, STy) ≤ γ(x, y), for all x, y ∈ X.

Now for the verification of condition (c), we have for all x, y ∈ X

0 ≾ d(x, Sx)d(y, Ty)

1 + d(x, Ty) + d(y, Sx) + d(y, x)
.

Consider

d(Sx, Ty) =d(
x

6
,
y

6
) = |x

6
− y

6
|+ i|x

6
− y

6
|

=
1

6
(|x− y|+ i|x− y|)

≾ γ(x, y)
d(x, Sx)d(y, Ty)

1 + d(x, Ty) + d(y, Sx) + d(y, x)

Therefore all the conditions of Theorem 2.2 are satisfied and x = 0 ∈ X is a unique common fixed point of S
and T .
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3. Conclusion

This paper has explored the dynamic realm of fixed point theory, particularly within the intricate domain of
contraction mappings in complex metric spaces. By introducing the concept of control functions, we have shed
new light on the behavior and properties of fixed points, enriching our understanding of their convergence
properties. Our investigation highlights the symbiotic relationship between contraction mappings and complex
metric spaces, underscoring the indispensable role of control functions in shaping the trajectory of fixed-point
iterations. Through our analysis, we have not only advanced the theoretical framework of fixed point theory
but also opened avenues for further exploration and application in various mathematical and scientific domains.
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This article focuses on the relationship between a scalar-explained random variable Y and a functional
explanatory random variable X. In fact, through this work, our aim is to estimate the conditional
probability density f(y/x) when the explanatory variable X is functional using the kernel method. More
precisely, we will present a numerical application based on simulated samples, with the aim of, on the one
hand, highlighting the implementation of the estimator in question and the impact of using a symmetric
kernel on its quality. On the other hand, when analyzing the performance of this estimator as a function
of the sample size, the hypothesis imposed on the smoothing parameters (the smoothing parameters in
the X direction and the Y direction are independent and the smoothing parameter in the X direction is
the same as that in the Y direction) and the norm used in its construction.
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1. Introduction

The first work on the nonparametric kernel conditional density estimation, when the explanatory variable is
functional, was introduced by Ferraty et al. A. Ferraty and Vieu, 2006; F. Ferraty, 2006. With the same ap-
proach followed by Rosenblatt Rosenblatt, 1969, for the real explanatory variable, the authors have constructed
and analyzed the kernel conditional density estimator in the functional explanatory variable. Since these two
works, the literature has developed on the kernel estimation of the conditional density in the framework of
functional explanatory variables, its derivatives, and its applications in other fields, we can cite for example
the works of: Ezzahrioui and Ould Saïd M. Ezzahrioui, 2010; M. Ezzahrioui and E, 2005, Ezzahrioui E. [ N.
Ezzahrioui, 2008, Laksaci A. Laksaci and Mechab, 2010, Laksaci and Mechab A. N. Laksaci, 2007, Ferraty et
al. A. Ferraty and Vieu, 2008; F. Ferraty et al., 2010 and Dabo-Niang Dabo-Niang, 2007.

Let (X,Y ) be a couple of random variables in F×R, where (F, ∥.∥) is a functions space equipped with a norm
∥.∥, i.e X is a (time-dependent) functional random variable depending in time (X ≡ X(t)). Let (Xi, Yi)1≤i≤n

be n independent pairs, identically distributed as the couple (X,Y ) and (x, y) be a fixed element of F×R. The
kernel estimator of f(y/x) in this context is defined by:
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f̂ab(y/x) =

n∑
j=1

K1

(
∥x−Xj∥p

a

)
K2

(
y−Yj

b

)

b
n∑

j=1

K1

(
∥x−Xj∥p

a

) , (1)

where K1 is a real asymmetric kernel function on R+, K2 is a real symmetric kernel function on R, a > 0 and
b > 0 are the smoothing parameters in the X and Y directions respectively, and ∥.∥p is a p-distance defined on
F (for more details on the p-distance see Section 2).

In order to establish the mean square convergence of the estimator (1), Laksaci A. N. Laksaci, 2007 de-
fined the formulas for bias and variance and the asymptotic square error of the estimator. Also, Ferraty et
al. F. Ferraty, 2006, showed the both pointwisely and uniformly almost complete convergence of the estima-
tor in question. Ferraty et al. A. Ferraty and Vieu, 2006 estimated the J th order of derivative of the estimator 1.

To simplify the formula (1), we propose another version, similar to that used by Youndjé Youndjé, 1996
in the case of one explanatory variable, under the hypothesis that the two smoothing parameters a and b are
equal (h = a = b). So, the expression (1) can be rewritten as follows:

f̂h(y/x) =

n∑
j=1

K1

(
∥x−Xj∥p

h

)
K2

(
y−Yj

h

)

h
n∑

j=1

K1

(
∥x−Xj∥p

h

) , (2)

2. Concept of the norm

To study data, we often need to have a notion of distance between them. In mathematics, a distance (or metric)
d(., .) is an application that formalizes the intuitive idea of distance, i.e. it represents the length that separates
two points.

One of the most popular idea in mathematics to calculate a distance between two points is to use a p−norm
that we denote by ∥.∥p. Thus, to study the estimators introduced in the previous section, it is interesting to
recall some common norms used in such estimators.
Let F be a set of functions and x(t) and y(t) two functions defined in F. The most commonly used norms in
practice to measure the distance between these two functional points (these two functions) are presented in the
following table:

Name Parameter Expression
Manhattan norm 1-norm

∫
F |x(t)− y(t)| dt

Euclidian norm 2-norm
(∫

F(x(t)− y(t))2dt
) 1

2

Minkowski norm p-norm
(∫

F |x(t)− y(t)|p dt
) 1

p

Tchebychev norm ∞-norm lim
p→∞

(∫
F |x(t)− y(t)|p dt

) 1
p = sup

t
| x(t)− y(t) |

Table 1: Some norms which are generally used as distance in the
functional framework.

3. Choice of kernel and smoothing parameter

From the two expressions (1) and (2), it is clear that the implementation of these estimators relies on the
prior fixing of the kernel, the smoothing parameter, and the norm ∥.∥p. In our work, we focus particularly
on the problem of choosing the smoothing parameter, because the choice of the kernel function remains the
same as the univariate density. Furthermore, because ∥u∥p is always a positive quantity, the real kernel K1

should have positive support, consequently, we must use asymmetric density functions for the kernel K1 (see
Chen, 1999, 2000). While K2 we must use a symmetric density functions because y−Yj

h ∈ R (see Silverman,
2018). However, the problem of choosing the smoothing parameter has received serious attention because the
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numerical and graphical characteristics of the designed kernel estimator are very sensitive to the variation of the
smoothing parameter, where small values of this parameter (compared to the optimal smoothing parameter)
generate the phenomenon of under-smoothing, while large values of this parameter generate the phenomenon
of over-smoothing.

Similarly to the cross-validation approach followed by Youndjé Youndjé, 1996 when the explanatory variable
is scalar, Rachdi and Vieu Rachdi and Vieu, 2007 and Benhenni et al. Benhenni et al., 2007 proposed,
respectively, a global leave-out-one-curve and a local adaptive leave-out-one-curve cross-validation procedure
for the regression operator estimation in functional data. Laksaci et al. A. Laksaci et al., 2013 constructed
the global and local leave-out-one-curve cross-validation procedures in the context of conditional density when
the explanatory variable is functional.

Global and local bandwidth selection rules
The idea of this approach is based on minimizing the integrated squared error, which is weighted by the
probability measure, dPX(x), of the functional variable X and some non-negative weighting functions W1 and
W2 associated to the variables x and y respectively. That is to say, they considered the integrated squared
error defined by the following expression:

ISE(f̂ , f) =

∫ ∫ (
f̂(y/x)− f(y/x)

)2
W1(x)W2(y)dPX(x)dy. (3)

So, the mean integrated squared error will be given as follows:

MISE(f̂ , f) =

∫ ∫
E
(
f̂(y/x)− f(y/x)

)2
W1(x)W2(y)dPX(x)dy. (4)

Discretizing the expression (3) allows us to obtain an approximation of the mean square error given by:

ISE(f̂ , f) ≈ 1

n

n∑

i=1

(
f̂(Yi/Xi)− f(Yi/Xi)

)2 W1(Xi)W2(Yi)

f(Xi, Yi)
. (5)

Concerning the weighting functions W1 and W2, we recall that these functions were introduced to reduce
bounds effects thanks to their support. But, in practice, Härdle and Marron Härdle and Marron, 1985 have
emphasized that the role of their expressions is not very determining and that they are functions arbitrarily
chosen by the user. Laksaci et al. A. Laksaci et al., 2013 took the expressions of W1 and W2 in their simulation
as:

W2(z) =

{
1 if z ∈ [minYi, i = 1...n× 0.9maxYi, i = 1...n× 1.1]
0 otherwise,

and

W1(t) =

{
1 if min d(t,Xi) < a0
0 otherwise,

where a0 = min(aq) and aq is the quantile of order q of the vector of all distances between the curves.

We note that the ISE and MISE functions depend on the unknown conditional density f , so, in practice,
the smoothing parameters that minimize these errors are not computable. By following the same ideas as in
Youndjé Youndjé, 1996 for the real case, Laksaci et al. A. Laksaci et al., 2013 proposed another function that
is asymptotically equivalent to the quadratic distance given in (3). Where they suggest to replace (3) by the
integrated squared error expressed as follows:

ISE(f̂ , f) = A+B − 2C,

where

A =

∫ ∫
f̂(y/x)2W1(x)W2(y)dPX(x)dy,

B =

∫ ∫
f(y/x)2W1(x)W2(y)dPX(x)dy,

and

C =

∫ ∫
f̂(y/x)f(y/x)W1(x)W2(y)dPX(x)dy.
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Since the second term B is independent of the smoothing parameter (a, b), the problem of minimizing
the ISE is equivalent to that of minimizing the function A − 2C. Thus, to select the bandwidth (a, b) that
minimizes the approximate ISE (AISE = A− 2C), we must first estimate the two quantities A and C whose
form are as follows;

C =

∫ ∫
f̂(y/x)f(y/x)W1(x)W2(y)dPX(x)dy,

=

∫ ∫
f̂(y/x)W1(x)W2(y)dPY/X=x(y)dPX(x),

=

∫ ∫
f̂(y/x)W1(x)W2(y)dP(X,Y )(x, y),

= E(X,Y )

(
f̂(Y/X)W1(X)W2(Y )

)
,

and,

A = EX

(∫
f̂(y/X)W1(X)W2(y)dy

)
,

where EX denotes the mean associated with the distribution of the random variable X.

For the aim to minimize the function A − 2C, the authors have followed the idea of Rudemo Rudemo,
1982 and Rachdi and Vieu Rachdi and Vieu, 2007 where they adopted the cross-validation technique with
leave-out-one-curve principle. More precisely, they constructed the following criteria, for the global smoothing
parameter:

GCV (a, b) =
1

n

n∑

i=1

W1(Xi)

∫ (
f̂−i (y/Xi)

)2
W2(y)dy

− 2

n

n∑

i=1

f̂−i (Yi/Xi)W1(Xi)W2(Yi), (6)

and the following local criteria, for a fixed y ∈ R and x ∈ F;

LCV (a, b) =
1

n

n∑

i=1

W1,x(Xi)

∫ (
f̂2
−i (z/Xi)

)
W2,y(z)dz

− 2

n

n∑

i=1

f̂−i (Yi/Xi)W1,x(Xi)W2,y(Yi), (7)

where, W2,x (respectively W2,y) is some positive local weight function around x (respectively y), Laksaci et
al. A. Laksaci et al., 2013 used the following local weight functions:

W1,x =

{
1 if min d(t;x) < a(x);
0 otherwise

and W2,y(z) =

{
1 if |z − y| < b(y);
0 otherwise

where a(x) (respectively, for b(x)) the ball centered at x (respectively the interval centered at y) with radius
a(x) (respectively with radius b(y)) contains exactly k neighbors of x (respectively of y).

And f̂−i(y/x) represent the kernel conditional density estimator, using the cross-validation technique com-
puted from the set of points except the point (xi, yi), its formula is given by:

f̂−i(yi/xi) =

n∑
j=1,j ̸=i

K1

(
∥xi−Xj∥p

a

)
K2

(
yi−Yj

b

)

b
n∑

j=1,j ̸=i

K1

(
∥xi−Xj∥p

a

) ,

Hence, the global (respectively, local) cross-validation procedure consists of choosing the smoothing param-
eters (a, b) which minimize the criteria GCV (respectively LCV ).
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4. Numerical application

This section aims to illustrate, via numerical examples and using the simulation approach, how to implement
the conditional kernel density estimator when the explanatory variable is functional, and to verify the impact
of the substitution of the kernel K1, initially asymmetric, and the kernel K2 by a same symmetric kernel K.
Also, we focus in the choice of the norm used to calculate the distance between the points x(t) and xi(t) on the
quality of the designed estimator.

4.1. Presentation of the application and its parameters

In order to study the effect of using a symmetric kernel in the performance of kernel conditional density
estimation when the explanatory variable is functional, let consider that K1 = K2 = K, with K is a real
symmetric kernel function on R. that is, we rewrite (1) and (2) respectively as follows:

f̂ab(y/x) =

n∑
j=1

K
(

∥x−Xj∥p

a

)
K
(

y−Yj

b

)

b
n∑

j=1

K
(

∥x−Xj∥p

a

) , (8)

and

f̂h(y/x) =

n∑
j=1

K
(

∥x−Xj∥p

h

)
K
(

y−Yj

h

)

h
n∑

j=1

K
(

∥x−Xj∥p

h

) , (9)

In order to meet our objective, we have implemented a simulator in a Matlab environment, whose main steps
are:

1. Generate m samples (X
(l)
i , Y

(l)
i ) of size n of a target distribution, where l = 1, ...,m and i = 1, ..., n.

2. Compute (â, b̂) and ĥ that minimize the average of the ISE associated with each estimator.

3. Calculate the both estimators (8) and (9) and compare their performance.

To realize these steps, and for calculation reasons, we proposed to discretize (to approximate) the average
ISE. More precisely, we use the discretized expression of the average ISE that is given as follows: (see
Bashtannyk and Hyndman, 2001):

ISE =
∆

nN

m∑

l=1

J∑

j=1

n∑

i=1

[
f̂(y

′
j/x

(l)
i )− f(y

′
j/x

(l)
i )
]2

, (10)

where (xi, yi), i = 1, ..., n an independent and identically distributed observations from the joint density
of (X,Y ), y

′
=
(
y

′
1, y

′
2, ..., y

′
J

)
is a vector of equidistant points in the space of Y and ∆ = y

′
j+1 − y

′
j , ∀j ∈

{1, 2, ..., J − 1}.
Consequently, the estimators of the optimal smoothing parameters, in the sense of the average of the ISE,

correspond to the quantities which minimize the expression (10).

For the simulation example, we considered the following model, which represents a conditional density Y
knowing X = x follows a normal law with mean ∥x∥2 and variance 1, given by:

f(y/x) =
1√
2π

e−
1
2 (y−∥x∥2)

2

, (11)

and suppose that the explanatory variables Xi from a stochastic process similar to that proposed by Delsol
Delsol, 2008, and it defined by:

Xi = Xi(t) = ai cos(2πt) + bi sin(3πt) + ci(t− 0.45)(t− 0.75)e(−dit),

with t ∈ [0, 1], ai ⇝ N(−1, 1), bi ⇝ N(−1, 1), ci ⇝ U [1, 5] and di ⇝ U [1, 5], where N and U respectively
designate a normal distribution and a uniform distribution.

An illustration example about the variation of our model which defined in (11), depending on ∥x∥2 is
presented in figure 1. The Figure 2 represents an example of a sample of size n = 10 from the variable X,
where the red curve in the figure 2 represents the theoretical E(X(t)), that is to say when E(a) = E(b) = −1
and E(c) = E(d) = 3.
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Figure 1: Illustration curves about the variation of the density f(y/x) in depending on ∥x∥2.

Figure 2: Ten examples of a sample xi(t) generated from the variable X.
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4.2. Numerical and graphic results

To obtained the results of the numerical application, we consider to use the Gaussian kernel and the norm
p ∈ {1, 2, ∞} in the construction of the two versions of the conditional density estimator in question. The
application was carried out on 100 samples (m = 100) of size n ∈ {50 , 100 , 200 , 500 , 1000 , 2000} at the
point x = E(X) (see figure 2).

The numerical results obtained in our application are arranged in Table 2 and are presented in Figures 3–4
.

a = b a ̸= b

Norm n ĥ ISEh (â, b̂) ISE(a;b)

50 0.8739 0.0187 ( 23.7655 ; 0.5509 ) 0.0064
100 0.8707 0.0176 ( 32.6362 ; 0.4953 ) 0.0043
200 0.8689 0.0166 ( 23.3421 ; 0.419 ) 0.0023

∥.∥1 500 0.8681 0.0162 ( 31.3126 ; 0.3695 ) 0.0014
1000 0.8672 0.0162 ( 28.8502 ; 0.3176 ) 0.001
2000 0.8665 0.0161 ( 35.6687 ; 0.2659 ) 0.0006
50 0.8771 0.0176 ( 23.6759 ; 0.5784 ) 0.0062
100 0.8703 0.0173 ( 21.494 ; 0.5151 ) 0.0039
200 0.867 0.0173 ( 17.8311 ; 0.4541 ) 0.003

∥.∥2 500 0.8668 0.0165 ( 30.8016 ; 0.348 ) 0.0014
1000 0.8667 0.016 ( 33.0062 ; 0.3195 ) 0.0008
2000 0.8662 0.0156 ( 39.1335 ; 0.2431 ) 0.0005
50 0.8817 0.0209 ( 28.8429 ; 0.5458 ) 0.0067
100 0.8747 0.0177 ( 23.7255 ; 0.4911 ) 0.0041
200 0.8674 0.0176 ( 26.9714 ; 0.4362 ) 0.0024

∥.∥∞ 500 0.8676 0.0165 ( 29.9083 ; 0.3765 ) 0.0016
1000 0.8663 0.0164 ( 37.9307 ; 0.2872 ) 0.0009
2000 0.8655 0.0164 ( 41.8221 ; 0.2384 ) 0.0006

Table 2: Variation of ISE according to the sample size n, the norm
∥.∥p and the hypothesis imposed on the smoothing parameters.
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Figure 3: Variation of ĥ and ISEĥ according to the sample size.

4.3. Discussion of results

Taking into account the numerical and graphical results obtained in the previous section, we note that:

• In all situations considered, the optimal smoothing parameters decrease where the sample size in-
creases, which coincides with the following fundamental property (condition) of the smoothing parameter:
lim
n→∞

h(n) = 0.

• Independently of the norm used, the estimators f̂ab(y/E(X)) and f̂h(y/E(X)) converge to f(y/E(X))
in L2 (average ISE) and this can be justified by the decrease of the average ISE (convergence to zero),
associated with the estimators in question, as the sample size n increases..

• The estimator f̂ab(y/E(X)) is more efficient, in the sense of the average ISE, than the estimator
f̂h(y/E(X)) and this independently of the sample size and the norm used for the construction of these
two estimators.

• The three norms used practically provide us with estimators of the same performance (average ISE). But
in general, we see that there is a slight preference:

– For the ∥.∥2 norm when the sample size is very small.
– For the ∥.∥1 norm when the sample size is medium.
– For the ∥.∥2 norm when the sample size is large.

• Because of the positivity of the distance between x and xi (∥x − xi∥p ≥ 0), the kernel must be defined
on a support positive when the explanatory variable is functional. Our results show that even for a
symmetric kernel we can have reasonable results.

5. Conclusion

By a small research in the literature, we can note that the conditional density when the explanatory variable is
functional is a rich problem in statistics and it is in high demand in many fields of application, see Bosq, 2000,
Bosq, 2000, F. Ferraty, 2006, Ramsay and Silverman, 2005. In this work, our objective was to present an
illustrative numerical example of the implementation of the conditional density estimator, when the explanatory
variable is functional, and we mainly focus on its performance as a function of the sample size, the hypothesis
imposed on the smoothing parameters, and the norm used in its construction, and to highlight the impact of
using a symmetric kernel on its quality.
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abstract

The present paper provides a new technique using the clique polynomials as basis function for the opera-
tional matrices to obtain numerical solutions of third-order non-linear ordinary differential equations. It
aims to find all solutions as easy as possible. Numerical results derived using the proposed techniques are
compared with the exact solution or the solutions obtained by other existing methods. The new numerical
examples were examined to show that the new approach is highly efficient and accurate. The approximate
solutions can be very easily calculated using computer program Matlab.
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1. Introduction

Many problems in physics, chemistry, and engineering science are modeled as third-order boundary value prob-
lems or initial value problems. These boundary value problems can be found in different areas of applied
mathematics and physics such as, in the deflection of a curved beam having a constant, thin-film flow, and
gravity-driven flows (see Momoniat and Mahomed, 2010; Tuck and Schwartz, 1990). Most nonlinear differen-
tial equations do not have exact solutions, so approximation and numerical techniques must be used. Many
researchers developed some methods to solve boundary and initial value problems of different order such as
Agarwal, 1986; Butcher, 2016; Fatima, 2024 and others. In this paper, we focus on initial value problems of
third-order nonlinear ordinary differential equations.

{
y′′′ = f (x, y (x) , y′ (x) , y′′ (x))
y (x0) = α, y′ (x0) = β, y′′ (x0) = γ, x ∈ [x0, xend]

(1)

where y(x) ∈ R, f := R × R × R × R → R is a continuous function and α, β and γ are constants. Several
direct methods are widely proposed by researchers in solving third-order differential equations such as iterative
method, Traub’s method Chun and Kim, 2010, block method Abu Arqub et al., 2013; Mehrkanoon, 2011; Yap
et al., 2014, Runge-Kutta method Fang et al., 2014; Lee et al., 2020; You and Chen, 2013, operational matrices
of Bernstein polynomials method Khataybeh et al., 2019; Malik et al., 2021 and more.
The main of this paper is to apply the new operational matrix of integration method using clique polynomials
to solve the third-order initial value problems. It is shown that the method provides the solution in a rapid
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convergent series. The other operational matrix method using clique polynomials has been used by Kumbinara-
saiah et al., 2021 and Ganji et al., 2021 to solve effectively the non linear Klein Gordon equation and non-linear
fractional Klein Gordon equation, which converge rapidly to accurate solutions. We show that the initial value
problems of third-order can be solved efficiently using the clique polynomials. The present method converts
Eq. (1) to a system of algebraic equations which can be solved easily. The capability of the method shall be
tested on a linear and nonlinear third-order differential equations.
This paper is arranged as follows. In Section 2, we give the interesting properties of clique polynomials and
there convergence analysis. In Section 3, we construct the operational matrix technique using the clique poly-
nomials for solving numerically the nonlinear third-order differential equations. Section 4 includes to present
several results and discussions to show the efficiency and simplicity of the proposed method. Finally, conclusion
is given in Section 5.

2. Clique polynomials and convergence analysis

Let G be a graph that is free from multi edges and loops. The clique polynomial of a graph G, denoted by
C(G;x), is characterized by Hoede and Li, 1994

C(G;x) =
n∑

k=0

akx
k

where ak represent the total distinct k−cliques in graph of size k, with a0 = 1. The clique polynomial of a
complete graph Kn with n−vertices is given by

C (Kn;x) = (1 + x)
n
=

n∑

k=0

(
n

k

)
xk

where
(
n
k

)
= n!

k!(n−k)!

In particular

C(K0;x) = 1

C(K1;x) = 1 + x

C(K2;x) = 1 + 2x+ x2

C(K3;x) = 1 + 3x+ 3x2 + x3

Let B = {Cn(x) = C(Kn, x), n ∈ N}. Clearly B is Banach space on closed subset A of R with norm given by

∥Cn∥ = sup |Cn (x)|
∀x∈A

∀Cn ∈ B (A)

We can approximate any function f(x) in L2[0, 1] in terms of the clique polynomial as (see Ganji et al.,
2021; Kumbinarasaiah et al., 2021 )

f (x) ≈ f̃ (x) =
n−1∑

i=0

aiC (Ki;x)

We can write

f (x) =
n−1∑

i=0

ai(
i∑

k=0

(
i

k

)
xk) = ATPX (x)

where AT = [a0, a1, . . . , an−1], X(x) = [1, x, . . . , xn−1]T and P is the lower triangular n×n matrices defined by

pij =

{
0 j > i, i, j = 1, 2, ..., n

(i−1)!
(i−j)!(j−1) i ≥ j, i, j = 1, 2, ..., n

3. Description of the clique polynomial operational matrix method

We consider the clique polynomial operational matrix method along with collocation points to solve the following
third-order of differential equations

y(3) = f(x, y, y′, y′′), 0 ≤ x ≤ 1 (2)
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with the initial conditions
y(0) = b1, y

′ (0) = b2, y
′′
(0) = b3 (3)

where b1, b2, b3 are real constants and f is a given continuous on [0, 1], nonlinear function. We assume that

y′′′ (x) = ATPX (x) (4)

Where A is an unknown vector to be determined AT = [a0, a1, . . . , an−1], X (x) is the known vector defined
above and

P =




1 0 0 0 · · · 0
1 1 0 0 · · · 0

1 2 1
. . . · · · 0

1 3 3
. . . 0 0

...
...

...
. . . 1 0

1 n− 1 (n−1)(n−2)
2! · · · n− 1 1




For solving the equation (2), we calcul the derivatives y(k)(x) where k = 0, 1, 2, 3, x ∈ [0, 1] and with the initial
conditions (3)

It is easy to prove that this identity
∫ x

0

∫ x

0

...

∫ x

0
k times

ATPX (t) dt = ATPMkx
kX (x)

where Mk is the n× n matrices

Mk =




1
k! 0 0 · · · 0
0 1

2×3×...(k+1) 0 · · · 0

0 0 1
3×4×...(k+2)

. . . 0
...

...
. . . . . . 0

0 0 · · · 0 1
n(n+1)...(n+k−1)




Integrating equation (4) third times on bothside with respect to x limit between 0 and x, we obtain

y (x) = b1 + b2x+
b3
2
x2 +

∫ x

0

∫ x

0

∫ x

0

ATPX(t)dt

After integration yields

y (x) = b1 + b2x+
b3
2
x2 +ATPM3x

3X(x)

where

M3 =




1
3! 0 0 · · · 0
0 1

4! 0 · · · 0

0 0 1
3×4×5

. . . 0
...

...
. . . . . . 0

0 0 · · · 0 1
n(n+1)(n+2)




Now by substituting y, y′, y′′, y′′′ into equation (2) and collocate this equation by the following collocation
points xi =

2i−1
2n , i = 1, ..., n, we get a system of n non linear equations with n unknowns (a0, a1, ..., an−1). The

unknown coefficients are determined by satisfying the remaining the initial conditions (3) at chosen collocation
points. This system can be solved by using the Newton method.

4. Numerical results

In order to test the proposed method, we present some numerical results obtained by applying operational ma-
trix method to find numerical approximations of the solutions of some test problems

(
xi =

1
10 i; i = 0, 1, ..., 10

)
.

We will discuss the new numerical examples of third-order initial value problems. The tables 1-4 clearly show
the improvements we achieved if compared to the exact solution. Figures 1, 3 and 5 show the comparison
between the numerical solutions and the exact solutions of the initial value problems (Examples 1-3). Exam-
ining these tables, it is clear that the absolute errors were seem to be small. It is should be noted that the
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Table 1: Numerical results for Example 1 (n = 10)
x Exact solution Numerical solution Errors
0 −1 −1 0
0.1 −0.994995834721974 −0.994995834723177 1.20281562487889E − 12
0.2 −0.979933422158758 −0.979933422162680 3.92197385679083E − 12
0.3 −0.954663510874394 −0.954663510881710 7.31581462076747E − 12
0.4 −0.918939005997115 −0.918939006007955 1.08402176124400E − 11
0.5 −0.872417438109627 −0.872417438122700 1.30726540703563E − 11
0.6 −0.814664385090322 −0.814664385113334 2.30125918321278E − 11
0.7 −0.745157812715512 −0.745157812779116 6.36040109469604E − 11
0.8 −0.663293290652835 −0.663293290813850 1.61015867305991E − 10
0.9 −0.568390031729336 −0.568390032047044 3.17708304109487E − 10
1 −0.459697694131860 −0.459697694888935 7.57074403168190E − 10

approximate solution approaches the exact solution as n, the number of the basis functions, increases. All
numerical computations have been done in Matlab (see Matlab program below), the program execution time
by this method is 47 second.
Where

Absolute error= |Exact solution − Numerical solution|

Example 1 Consider the linear third-order initial value problem

y′′′ = sin(x), 0 ≤ x ≤ 1 (5)

with initial conditions
y (0) = −1, y′ (0) = 0, y′′ (0) = 1 (6)

The analytic solution of the above problem is

y = cos(x) + x2 − 2 (7)

We have
y(x) = −1 +

1

2
x2 +ATPM3x

3X(x)

Substituting equation (4) into (5) yields
ATPX (x) = sin(x)

We collocate this equation at the collocation points xi =
2i−1
2n , i = 1, ..., n to obtain numerical values of y. By

using the conditions (6), the obtained system is solved, yielding the following results for n = 10

A =




−0.810695
0.332789
1.038764
−1.157273
1.142639
−0.856889
0.418821
−0.129569
0.023261
−0.001849




Table 1 and 2 show that the numerical solutions and the errors obtained for linear third-order initial value
problem (5) (Example 1) by using the present method and compared with the exact solution (7) for n = 10 and
n = 15 respectively. Figure 1 shows the comparison between the approximate solution and the exact solution
(7) of the problem (5). In Figure 2, the absolute errors have been shown at distinct points.
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Figure 1: Comparison of approximate and exact solution for Example 1.
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Table 2: Numerical results for Example 1 (n = 15)
x Exact solution Numerical solution Errors
0 −1 −1 0
0.1 −0.994995834721974 −0.994995834721283 −9.7666319476275E − 13
0.2 −0.979933422158758 −0.979933422154582 −6.9754202414174E − 12
0.3 −0.954663510874394 −0.954663510866042 −2.57520671453904E − 11
0.4 −0.918939005997115 −0.918939005974870 −6.47839559775321E − 11
0.5 −0.872417438109627 −0.872417438040750 −1.19521503805231E − 10
0.6 −0.814664385090322 −0.814664384930306 −1.78378645188104E − 10
0.7 −0.745157812715512 −0.745157812411764 −2.44772868640553E − 10
0.8 −0.663293290652835 −0.663293290068459 −3.49193451931740E − 10
0.9 −0.568390031729336 −0.568390030578339 −5.29264299053978E − 10
1 −0.459697694131860 −0.459697691704301 −7.88076048863218E − 10

Example 2 Consider the linear third-order initial value problem

y′′′ = 8e2x + 2, 0 ≤ x ≤ 1 (8)

with initial conditions
y (0) = −2, y′ (0) = 2, y′′ (0) = 4 (9)

The analytic solution of the above problem is

y (x) = e2x +
1

3
x3 − 3 (10)

By solving the equation (8) with conditions (9) we obtain the vector A for n = 10

A =




3.099290
2.071009
2.360541
1.332371
0.476479
0.862816
−0.466501
0.338103
−0.090077
0.015966




Table 3 shows that the approximate solutions and the errors obtained for linear third-order initial value problem
(8) (Example 2) and compared with the exact solution (10) for n = 10. Figure 3 shows the comparison between
the approximate solution and the exact solution of the problem (8). Figure 4 shows the error Analysis of
Example 2.
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Table 3: Numerical results for Example 2 (n = 10)
x Exact solution Numerical solution Errors
0 −2 −2 0
0.1 −1.778263908506500 −1.77826390851309 6.58939569575523E − 12
0.2 −1.505508635692060 −1.50550863571379 2.17246221012601E − 11
0.3 −1.168881199609490 −1.16888119964800 3.85114162781970E − 11
0.4 −0.753125738174199 −0.753125738236310 6.21112050680495E − 11
0.5 −0.240051504874288 −0.240051504963057 8.87692142015339E − 11
0.6 +0.392116922736547 +0.392116922630138 1.06409547839803E − 10
0.7 +1.169533300178010 +1.169533300081640 9.63700230727227E − 11
0.8 +2.123699091061780 +2.123699090985880 7.59063922828318E − 11
0.9 +3.292647464412950 +3.292647464403680 9.26281273905261E − 12
1 +4.722389432263980 +4.722389431036580 1.22740306807145E − 09

Table 4: Numerical results for Example 3
x Exact solution Numerical solution for n = 7 Numerical solution for n = 10

0 1 1 1
0.1 0.90483741803590 0.90483741804721 0.90483741803568
0.2 0.81873075307798 0.81873075312857 0.81873075307623
0.3 0.74081822068171 0.74081822079209 0.74081822067633
0.4 0.67032004603563 0.67032004622430 0.67032004602522
0.5 0.60653065971263 0.60653065999590 0.60653065969547
0.6 0.54881163609402 0.54881163648641 0.54881163606573
0.7 0.49658530379141 0.49658530430750 0.49658530374543
0.8 0.44932896411722 0.44932896476990 0.44932896404636
0.9 0.40656965974059 0.40656966054202 0.40656965963669
1 0.36787944117144 0.36787944214112 0.36787944102411

Example 3 Consider the non-linear third-order initial value problem

y′′′ + y′′ + y′y = −e−2x, 0 ≤ x ≤ 1 (11)

with initial conditions
y (0) = 1, y′ (0) = −1, y′′ (0) = 1 (12)

The analytic solution of the above problem is

y (x) = e−x (13)

By solving the equation (11) with conditions (12) we obtain the vector A for n = 10

A =




−2.197399
−0.840032
9.378083

−18.330639
20.881442
−15.525444
7.625636
−2.391506
0.434777
−0.034917




Table 4 and 5 show that the numerical solutions and the errors obtained for non-linear third-order initial value
problem (11) (Example 3) and compared with the exact solution (13) for n = 7 and n = 10 respectively. Figure
5 shows the comparison between the approximate solution and the exact solution of the problem (11). Figure
6 shows the error Analysis of Example 3.
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Figure 5: Comparison of approximate and exact solution for Example 3.
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Table 5: Errors obtained for Example 3
x Errors for n = 7 Errors for n = 10

0 0 0
0.1 1.12592157819336E − 11 2.74891220897189E − 13
0.2 5.05927522098659E − 11 1.74982250911171E − 12
0.3 1.10377484929813E − 10 5.38702416008618E − 12
0.4 1.88661086752973E − 10 1.04127817479593E − 11
0.5 2.83306489379243E − 10 1.71629377376803E − 11
0.6 3.92390342440763E − 10 2.82878165336342E − 11
0.7 5.16110376658219E − 10 4.59714488698637E − 11
0.8 6.52678022738939E − 10 7.08584302344661E − 11
0.9 8.01421373708422E − 10 1.03907771276113E − 10
1 9.69684443852259E − 10 1.47327927635388E − 10

Table 6: Numerical results for Example 4 (n = 10 and B = 1)
x Hb. method Adesanya et al., 2013 Bp. method Khataybeh et al., 2019 (CP) method
0.1 0.004999979166110 0.0049999583341723 0.004999958453095
0.2 0.019998666668590 0.0199986668419935 0.019998667405196
0.3 0.044998481293978 0.0449898794745896 0.044989880928476
0.4 0.079991467388617 0.0799573779857994 0.079957380252171
0.5 0.124967454367055 0.1248700575229549 0.124870060064380
0.6 0.179902837409194 0.1796771412454840 0.179677143791334
0.7 0.244755067600357 0.2443036169821510 0.244303617750305
0.8 0.319454500640289 0.3186460093102460 0.318646005190335
0.9 0.403894871267148 0.4025686205525250 0.402568610236483
1 0.497922483110430 0.4959003827831510 0.495900375094189

Example 4 Now consider the nonlinear boundary layer equation

2y′′′ + y′′y = 0, 0 ≤ x ≤ 1 (14)

with initial conditions
y (0) = 0, y′ (0) = 0, y′′ (0) = B (15)

This equation is famously known as the Blasius equation. The aim of solving Blasius equation to get the value
y′′ (0) to evaluate the shear stress at the plate. Blasius equation has been solved using different methods like
series expansions, Runge Kutta, differential transformation and others. By solving the Equation (14) with
conditions (15) we obtain the vector A for n = 10 and B = 1

A =




−5.258858
34.500595

−102.128598
176.867272
−196.065300
143.930229
−69.967095
21.716530
−3.904633
0.309859




Table 6 show that the numerical solutions for non-linear Blasius equation (14) (Example 4) by using presented
method ((CP) method) and compared with another numerical methods for n = 10 and B = 1 (Hb. method
is Hybrid block method and Bp is Bernstein polynomials). In all the above the results, it is noticed that the
numerical solutions achieved by our method coincide quite well with other methods available in the literature
and signify that the proposed method is viable and convergent.
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5. Conclusion

In this paper, we introduced an effective operational matrix method for solving nonlinear third-order of non-
linear ordinary differential equations by constructing a new matrices using the clique polynomials. The proposed
approach has been successfully applied to various numerical examples to demonstrate its applicability and accu-
racy. Numerical simulations confirm that the approximate solutions are in excellent agreement with solutions
obtained by other existing methods or exact solution, and a highly accurate solution can be obtained in a
few iterates, which is apparent through numerical results. The proposed algorithm is an efficient and highly
promising technique for solving third-order non-linear ordinary differential equations. The method might be
applied for a system of differential equations or higher order of boundary value problems.
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