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Studying a Hidden Bifurcation and Finding Hopf
Bifurcation with Generated New Saturated

Function Series
Faiza Zaamoune1 and Tidjani Menacer2

ABSTRACT: In this article, a hidden bifurcation of the multispiral chaotic attractor generated by the new saturated function series has

been considered. The general shape of the chaotic attractors is described in terms of the number of spirals (also reffered to as multiscroll

attractor) governed by integer parameters p and q. Due to the integer nature of the parameter, it is not possible to observe bifurcations

from M spirals when the parameter is increased by two. However, by using the method of hidden bifurcations, an additional real

parameter ε was introduced to observe such bifurcations. Additionally, this added parameter allowed us to find the Hopf bifurcation of

the multispiral attractor generated by the new saturated function series transitioning from a stable state to a chaotic state. Furthermore,

the Routh-Hurwitz criterion was used to study the stability of the original equilibrium point of the system.
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1 INTRODUCTION

In nonlinear dynamics, chaotic systems and their dynamical characteristics are fascinating subjects (phys-
ical and engineering systems, climate models and global weather patterns and biological systems...). Such
dynamical systems produce significantly differing results for small differences in initial conditions (e.g.,
rounding errors in numerical computation), making long-term behavior prediction generally difficult. In
the last forty years, the scientific, mathematical, and engineering communities have devoted a great deal of
attention to the study of chaos, a highly fascinating and complicated nonlinear phenomenon [1], [2], [3], [4].

Dynamical behavior can be effectively explained by the bifurcation theory [5]. When a parameter
is changed, the dynamics of bifurcations of arbitrary invariant sets of dynamical systems seem more
appealing and complex [5]. Hopf bifurcation, sometimes called Poincare-Andronov-Hopf bifurcation, is
the local birth or death of a periodic solution (self-excited oscillation) from an equilibrium as a parameter
reaches a critical point [6].
Moreover, while most of these multiscroll generations have been known for a long time, bifurcation theory
has only lately been applied to their study [7]. They have also been identified for hidden attractors [8]
in the situation of infinitely many equilibria, as well as in the case where equilibrium points exist. The
number of scrolls (or spirals) for every multi scroll that is currently known is a fixed integer which is
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depends on one or more discrete characteristics [9].
In 2015, Menacer et al., introduced a hidden bifurcation theory and producing multiscrolls in a family
of systems (6) with a continuous bifurcation parameter, modified the paradigm of discrete parameters
[10]. This technique was discovered from the hidden attractor theory, first presented by Leonov et al.
[12], [13], [14], [15], [16], which constitutes the foundation for this hidden bifurcation theory. We applied
this technique to the 1 − D multiscroll chaotic attractors generated by saturated function series [17]. A
saturated function series was proposed for generating multi-scroll chaotic attractors, including 1-D n-
scroll, 2-D n × m-grid scroll, and 3-D n × m × l-grid scroll chaotic attractors [19], [20].
This paper provides two new findings: first, we examined a hidden bifurcation in 1-D multiscroll chaotic
attractors created by a new saturated function series. In comparison with previous results [10], [19] we
found the difference in behavior and form of spirals; second, we determined the Hopf bifurcation and
stability of the origin equilibrium point E0 concerning ε and we identified a critical point for both. After a
lot of calculation, we noticed that Hopf bifurcation was determined in this case only with these values set
to me for α = t1 = 0.72, β = γ = 0.8, k = 10, h = 20.

This paper is organized as follows: In Section 2, the model of multiscroll chaotic attractors generated by
the new saturated function series proposed is studied. In Section 3, the localization technique introduced
for hidden bifurcation in multiscroll chaotic attractors generated by new saturated function series. In
Section 4, Hopf bifurcation and stability of the origin equilibrium point E0 for ε. Finally, in secion 5, we
have a concluding comments. Appendix A presents the technique of Leonov et al., for seeking a hidden
attractor.

2 DESIGN MULTISPIRAL CHAOTIC ATTRACTORS FROM SATURATED FUNCTION SERIES.
One of the fundamental PWL circuits is the saturated circuit, which is widely known. Saturated circuit
characteristics are effectivly the PWL models for operational amplifiers [7]. This study presents a multi-
piecewise non-linear saturated series model [17], which has the following expression:





·
x = y
·
y = z
·
z = −αx− βy − γz + t1g(x; k;h; p; q),

(1)

where

g(x; k;h; p; q) =





y1,k if x > qh+ 1
y2,k,i if |x− ih| ≤ 1

−p ≤ i ≤ q
y3,k,i if l1,i < x < l2,i

−p < i < q − 1
y4,k if x < −ph− 1,

(2)

with
l1,i = ih+ 1 and l2,i = (i+ 1)× h− 1,

y1,k = (2q + 1) k, y2,k,i = k (x− ih) + 2ik,
y3,k,i = (2i+ 1) k and y4,k = − (2p+ 1) k.
Parameters p, q, h and k are integers, and α, β, γ, t1 are real numbers. This article aims to examine the
attractors’ overall form and global geometric characteristics, which are expressed in terms of the number
of spirals, a phenomenon referred to as a hidden bifurcation [11]. Hopf bifurcations [5]. This work identifies
structurally chaotic attractors with fixed real parameter values of α = t1 = 0.72, β = γ = 0.8, k = 10 and
h = 20 (see Fig. 1 and see Fig. 2). The following formula determines the number M of spirals based on
two integer inputs, p and q:

M = p+ q + 2. (3)
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Fig. 1: Proposed Saturated function series with k = 3, h = 7, p = 2, q = 2

3 HIDDEN BIFURCATIONS REVEALING TECHNIQUE

A distinctive technique for identifying hidden bifurcations was presented by Menacer et al. [5] to overcome
this issue. This technique builds on the concept of Leonov and Kuznetsov [8] for examining hidden
attractors (i.e., homotopy and numerical continuation, see Appendix A). This method is new when applied
to multiscroll chaotic attractors from saturated function series. In this section, we briefly review the process,
where the parameters values are fixed at α = t1 = 0.72, β = γ = 0.8, k = 10, h = 20.
Rewrite system (1)-(2) to the form:

dx

dt
= Fx+ ηΨ(δTx), x ∈ R.3. (4)

Where

F =




0 1 0
0 0 1
−α −β −γ


 , η =




0
0
t1


 , δ =




1
0
0


 . (5)

Presenting the coefficient k∗ and small parameter ε, and describe system (4) as

dx

dt
= F0x+ ηεφ(δTx), (6)

where

F0 = F + k∗ηδT =




0 1 0
0 0 1

k∗t1 − α −β −γ


 ,

ρF0
1,2 = ±iω0, ρF0

3 = −d.
By nonsingular linear transformation X = SY system (6) is became to the form

dy

dt
= Hy +Bεφ(cT y), (7)

where

H =




0 −ω0 0
ω0 0 0
0 0 −d


 , B =




b1
b2
1


 , c =




1
0
−h


 . (8)

The transfer function WH(s) of system (7) can be presented as

WH(s) =
−b1s+ b2ω0

s2 + ω2
0

+
h

s+ d
. (9)
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Fig. 2: (a) The 6-spiral attractor generated by equation (1) and (2) for p = q = 2 3-projection into the plane
(x, y), (b) The 6-spiral attractor generated by equation (1) and (2) for p = q = 2 3− projection into the plane
(x, y, z).

Also, utilizing the equality of transfer functions of systems (6) and system (7), we obtain:

WF0(s) = δT (F0 − sI)−1η. (10)

This implies the following relations:

k∗ = α−ω2
0d

t1
,

d = c,
h = −t1

ω2
0+d2

= b1,

b2 =
−γ1

ω0(ω2
0+d2)

.

(11)

Since system (6) can be debilitated to the form (7) by the non-singular linear transformation defined in
(A), the following relations can be acquired:

H = S−1F0S, B = S−1η, cT = δTS. (12)

To solve these matrix equations, we obtain the following transformation matrix :

S =




S11 S12 S13
S21 S22 S23
S31 S32 S33


 ,
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Fig. 3: 2 spiral for ε=0.35 Fig. 4: 4 spirals for ε=0.94

with
S11 = 1, S12 = 0 , S13 = −h
S21 = 0, S22 = −ω0, S23 = dh
S31 = −ω3

0 , S32 = 0, S33 = d2h.
(13)

3.1 Numerical Results of the Hidden Bifurcation Technique
Using (A), with a sufficiently small ε we computed initial data for the first step of multistage localization
procedure

X(0) = SY (0) = S




ς0
0
0


 =




ς0S11
ς0S21
ς0S31


 . (14)

For system (4), this gives the initial data

X0(0) = (x0(0) = ς0, y
0(0) = 0, z0(0) = −ς0ω3

0.). (15)

The localization process outlined previously is now applied to system 1 with numerous spiral attrac-
tors. In order to accomplish this, we calculate a harmonic linearization coefficient and the initial frequency
ω0 as described in the Appendix:

ω0 = 0.86, k∗ = 0.32. (16)

Next, we compute the solutions to system (6) with the nonlinearity εφ(x) = ε(ψ(x)− k1x). To do this,
we start at the beginning with step 0.35 and increase ε successively from the value ε = 0.35 to ε = 1. The
starting data for the solutions for increasing values of ε, as shown in Table 1, is obtained via (15). So, from
the Table 1, we obtain the solutions X1(0) with one scroll to X4(0) (See Fig. 3 to Fig 6). In each figure, there
is a variant an even number of spirals in the attractor. The number of spirals increases by 2 at each step
as shown on Table 2 from 2 to 6 spirals. The values of ε in this table are totally the values of bifurcation
points.

Values of ε Xi(0) x0 y0 z0
0.42 X1(0) = X1(tmax) −0.57 0 0.1252

0.94 X2(0) = X2(tmax) −13.8295 1.7315 5.3924

0.98 X3(0) = X3(tmax) 27.1245 3.2587 −8.2567

1 X4(0) = X4(tmax) −1.1235 −2.1587 −7.2025

Table 1: Initial data according to the values of ε

Table 2: Values of the parameter ε at the bifurcation points for p = q = 2

Values of ε 0.35 0.94 0.98 1
Number of spirals 2 spiral 4 spirals 6 spirals 6 spirals
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Fig. 5: 6 spirals for ε=0.98 Fig. 6: 1 spirals for ε=1

4 HOPF BIFURCATION AND STABILITY OF THE ORIGIN EQUILIBRIUM POINT E0 WITH RESPECT
TO ε

4.1 Stability of the Origin Equilibrium Point E0 with Respect to ε

In the system (1)-(2) we have 2(p+q)+3 equilibrium points. They have a positive eigenvalue and a pair of
complex eigenvalues with negative real parts. This means that all equilibria of the system are saddle points
[17]. Using the conditions established by Routh-Hurwitz [18], we examine the stability of the equilibrium
point E0 in relation to the epsilon of the system (6). In [11], Menacer et al. present the idea of hidden
bifurcation in the Chua system by including a new parameter, epsilon, that regulates the spiral number.
The number of scrolls reduces as ε increases from 0 to 1. The following polynomial yields the eigenvalues
equation corresponding to this equilibrium point:

P (s) = s3 + a1s
2 + a2s+ a3. (17)

Using the result of the Routh-Hurwitz conditions, where the necessary and sufficient condition for the
equilibrium point E to be locally asymptotically stable is a1 > 0, a3 > 0 and a1 × a2 − a3 > 0.

In our study, we study the stability and Hopf bifurcation with respect to the parameter ε and the
parameters values are α = t1 = 0.72, β = γ = 0.8, p = q = 2, k∗ = 0.32. An equilibrium point of system (1)
independent of epsilon is the origin E0(0, 0, 0). The evaluation of the Jacobian matrix at the equilibrium
point E0(0, 0, 0) is:

JE0 =




0 1 0
0 0 1

−αk∗ + αε(k∗ + k) −β −γ


 =




0 1 0
0 0 1

0.2304 + ε6.7104 −0.8 −0.8


 .

Its characteristic polynomial is:

P (s) = s3 + 0.8s2 + 0.8s+ (0.2304 + ε6.7104).

The necessary and sufficient requirement for the equilibrium point is stated in the Routh-Hurwitz criteria.
E0 to be stable is 0.0343 < ε < 0.1297.

Proof. we applied the Routh-Hurwitz criteria for origin equilibrium point (0,0,0) we found:

First condition : a1 = 0.8 > 0 (18)
Second condition : a3 = 0.2304 + ε6.7104 > 0 =⇒ ε > 0.0.0343; (19)

Third condition : a1 × a2 − a3 = 0.64− 6.7104ε > 0 =⇒ ε < 0.1297 (20)

so E0 to be stable when: 0.0343 < ε < 0.1297.

Remark
For the special case ε = 0 : the system (1) becomes linear so the attractor as a limit cycle unstable see the
figure below :
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Fig. 7: The system’s attractor (1), in which ε = 0: limit of an unstable cycle.

4.2 Analysis of Hopf Bifurcation at the Origin Equilibrium Point E0 Regarding ε

The system (1) attached by the formula (2) has 2(p+q)+3 equilibrium points which we find by comparing
the right sides of the system to zero and which are given in [17]. We studied Hopf bifurcation at the point
(0, 0, 0) with the values α = t1 = 0.72, β = γ = 0.8, p = q = 2. The conditions of system (1) with p = q = 2,
to undergo a Hopf bifurcation at the equilibrium point E(0, 0, 0) when ε = ε∗

-The Jacobian matrix has two complex-conjugate eigenvalues s1,2 = Θ(ε)± iω(ε) and one real s3(ε),
-Θ(ε∗) = 0, and s3(ε

∗) ̸= 0,
-ω(ε∗) ̸= 0,
-dΘdε |ε=ε∗ ̸= 0.

Proposition 1. The system (1) undergoes a Hopf bifurcation at E(0, 0, 0), when the parameter ε crosses the critical
values ε∗ = 0.16039.

Proof. For the first condition : Θ(0.16039) = 0, and s3(0.16039) = −0.89444 ̸= 0,
For the second condition: ω(0.16039) = −0.80002 ̸= 0
For the last condition : dΘ

dε |ε=0.16039 = 0.46988 ̸= 0.
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(a)

(b)

Fig. 8: The results of Hopf bifurcation analysis (a): The bifurcation diagram for the critical point
ε∗ = 0.16039 , (b) : Clarify The bifurcation diagram for the critical point ε∗ = 0.16039.
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5 CONCLUSION

This article examines hidden bifurcations of the multispiral Chaotic attractor produced by the newly
discovered saturation function series. The number of spirals, or multiscroll attractor, determined by the
integer parameters p, q, has been used to characterize the overall shape of the chaotic attractors. When
this parameter is increased by two, bifurcations from M spirals cannot be observed because of its integer
character. Nevertheless, an extra real parameter ε was added in order to observe such bifurcations using
the hidden bifurcation approach. Additionally, the Hopf bifurcation of the multispiral attractor produced
by the new saturated function series from a stable state to a chaotic state may be found thanks to this
additional parameter. Furthermore, the stability of the system’s initial equilibrium point was examined
using the Routh-Hurwitz criteria. In our futur works, we will provide to find a hidden attractors and
hidden bifurcations in new systems.

APPENDIX A
TECHNIQUE OF LEONOV ET AL FOR SEEKING A HIDDEN ATTRACTOR

The technique for seeking attractors of multidimensional nonlinear dynamical systems with scalar non-
linearity was proposed by Leonov [12] and Leonov et al. [8], [13], [14], [15], [16]. Their technique is based
on numerical continuation: a series of linked systems is built such that, for the first system (the starting
system), the initial data for the numerical computation of a potential oscillating solution (the starting
oscillation) can be obtained analytically. The proposed technique is extended in [16], [10] to the system of
the form

U̇ = PX + qF (rTX), X ∈ Rn, (21)

where q, r are constant n-dimensional vectors, F (σ) is a continuous piece- wise differential function
reaching the condition F (0) = 0, and T implies transpose operation. P is a constant n× n-matrix.

Here, we outline their technique for the simplified case when n = 3. Thus, we take into consideration
the equation.

Ẋ = PX + qF (rTX), U ∈ R3, (22)

where F (σ) is a continuous nonlinear function.

They then define a coefficient of harmonic linearization ϑ (suppose that such ϑ exists) in such a way
that the matrix

P0 = P + ϑqrT , (23)

of the linear system
Ẋ = PX, (24)

has a pair of purely imaginary eigenvalues ±iω0, (ω0 > 0 ) and the other eigenvalue has negative real
part. In practice, to determine ϑ and ω0 they use the transfer function W (τ) of system(21)

W (τ) = r(P − τI)−1q, (25)

where τ is a complex variable and I is a unit matrix. The number ω0 > 0 is determined from the
equation Iς W (iω0) = 0 and ϑ is calculated by the formula ϑ = −ReW (iω0)

−1.

Therefore, system (21) can rewrite as

Ẋ = P0X + qf(rTX), X ∈ R3, (26)

where f(σ) = F (σ)− ϑσ.

Following that, they introduce a finite sequence of continuous functions f0(ς), f1(ς), ..., fm(ς) in such a
way that the graphs of neighboring functions f j(ς) and f j+1(ς), (j = 0, ...,m− 1) in a sense, slightly differ
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from each other, the function f0(ς) is small and fm(ς) = f(ς). The function f0(ς), allows the application
the method of harmonic linearization (describing function method) to the system

Ẋ = P0X + qf0(rTX), X ∈ R3, (27)

if the stable periodic solution X0(t) close to harmonic one is determined. Then for the localization of an
attractor of the original system (26), one can follow numerically the transformation of this periodic solution
(a starting oscillating is an attractor, not including equilibrium, denoted further by A0) simply increasing j.

By non singular linear transformation S (X = SZ) the system (27) can be reduced to the form




ż1(t) = −ω0z2(t) + b1g
0(z1(t) + cT3 z3(t))

ż2(t) = ω0z1(t) + b2g
0(z1(t) + cT3 z3(t))

ż3(t) = a3z3(t) + b3g
0(z1(t) + cT3 z3(t))

, (28)

where z1(t), z2(t), z3(t) are scalar values, a3, b1, b2, b3, c3 are real numbers and a3 < 0.

The describing function H is defined as

H(ς) =

2π
ω0∫

0

g(cos(ω0t)ς) cos(ω0ς)dt. (29)

Theorem 2. [8] If it can be found a positive ς0 such that

H(ς0) = 0, b1
dH(ς)

dς
|ς=ς0< 0,

has a stable periodic solution with initial data X0(0) = S(z1(0), z2(0), z3(0))
T at the initial step of algorithm

one has z1(0) = ς0+O(ε), z2(0) = 0, z3(0) = On−2(ε), where On−2(ε) is an (n− 2)-dimensional vector such that
all it’s components are O(ε).
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Bat Algorithm for Solving IVPs of Current

Expression in Series RL Circuit Constant

Voltage Case

Fatima Ouaar 1

ABSTRACT: In this paper, an efficient method for solving Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs)

used in the fields of electronics and electrical engineering is demonstrated. The method is based on the Bat-Inspired Algorithm (BA),

which simulates the echolocation navigation system used by bats to detect and pursue their prey. In the case of constant voltage, the

IVPs arise from an RL circuit consisting of a resistor and an inductor connected in series. The suggested method’s usability and

effectiveness are confirmed by the experimental results obtained by numerical example. The findings reveal that the BA algorithm

produces a satisfactory and precise approximation of the answers when compared to the exact solution in terms of solution quality.
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1 INTRODUCTION

In the field of engineering science, a variety of issues are brought about by the rapid advancement

of modern living and require accurate, fast solutions to challenges that are typically complicated and

challenging. Therefore, optimization algorithms [19] are the means of solving this problem, with the

exception of several heuristic approaches found in conventional optimization techniques, which are still

insufficient. Nonetheless, because nature often finds the best solution to an issue, it is seen as a source of

inspiration for tackling a variety of challenges [16].
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Because of this, several academics from various disciplines are motivated to develop a range of

metaheuristic algorithms that take advantage of various operators that are modeled after natural processes

[9]. An optimization issue can be solved in the simplest way possible using metaheuristic algorithms [2].

Compared to standard algorithms and iterative approaches, it can typically discover very good solutions

with less computing work. It also has a high number of searched variables and a quick convergence time.

By adopting various forms in accordance with the inspired process of the systems [22], such as Particle

Swarm Optimization (PSO) [13], Genetic Algorithm (GA) [7], Ant Colony Optimization (ACO) [4], Bee

algorithm [12], [5], and the Flower Pollination Algorithm (FPA) [19], [20], etc.

Yang initially presented the Bat Algorithm (BA) as a substitute technique for numerical optimization

in 2010 [21], [23]. It produces high echolocation, which is the technique of locating an item by reflected

sound, to simulate the behavior of bats in finding prey. By producing loud noises, one may cancel out

echoes that reverberate from various environments at varying frequencies [19].

To get beyond its shortcomings and capitalize on their advantages, BA was combined with other

nature-inspired metaheuristic algorithms. In this regard, some adjustments have been suggested to en-

hance BA’s performance. In [18], for instance, a BA that uses Lévy Flights and Differential Evolution

(DE) operators during optimization is presented. Distribution to boost BA’s search skills. A directional

BA was reported in 2017 [3], suggesting the use of directed echolocation to enhance BA exploration. A

noteworthy enhancement was suggested in [6], whereby the hybridization of BA and DE is employed.

In order to improve the search capabilities of BA, the standard BA has also been altered to use chaotic

maps rather than normal distribution [17], [14]. Additionally, a version of BA that takes the GA and

Invasive Weed Optimization (IWO) [24] into account has been introduced. Numerous fields find use for

BA and its expansions, including fuzzy logic, image processing, classifications, clustering and data mining,

inverse problems and parameter estimation, combinatorial optimization, scheduling, and fuzzy logic in

continuous optimization in engineering design.

A first order RL circuit, also known as an RL filter or RL network [1], in electronics and electrical

engineering, is an electric circuit made up of an inductor and a resistor, which may be operated in parallel

or series by a current source [10] or a voltage source [11]. This work is significant because it addresses the

IVP that result from a series RL circuit when the voltage is constant as an optimization problem. The BA

results and the results of the Range Kutta 4th order approach are contrasted with the acquired results since

the BA [23] is utilized as a tool to identify optimal numerical solutions to this issue.

The structure of this paper is as follows. Section 2 presents the issue formulation; Section 3 gives an

overview of BA and the key procedures for estimating an IVP solution. Essential formulas and a brief

explanation of series RL circuit ODEs are provided in Section 4 which exposes also an example of series

RL circuit IVPs to show how BA can lead to a satisfactory result for solving IVP. The comments and

conclusion are made in section 5.

2 FORMULATION OF THE PROBLEM

Let f = f(x, y) be a real-valued function of two real variables defined for a ≤ x ≤ b, where a and b are
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finite, and for all real values of y. The equations





y
′
= f(x, y)

y(a) = y0
, (1)

are called initial-value problem (IVP); they symbolize the following problem: To find a function y(x),

continuous and differentiable for x ∈ [a, b] such that y′ = f(x, y) from y(a) = y0 for all x ∈ [a, b] [8].

This problem possesses unique solution when: f is continuous on [a, b] × R, and satisfies the Lipschitz

condition; it exists a real constant k > 0, as | f(x, θ1) − f(x, θ2) |≤ k | θ1 − θ2 |, for all x ∈ [a, b] and all

couple (θ1, θ2) ∈ R× R.

Finding the optimal solutions numerically of an initial-value problem (IVP) is gotten with approximations:

y(x0 + h), . . . , y(x0 + nh) where a = x0 and h = (b − a)/n. For more precision of the solution, we must

use a very small step size h that includes a larger number of steps, thus more computing time which

not available in the useful numerical methods like Euler and Runge-Kutta methods [8], which may

approximate solutions of (IVP) and perhaps yield useful information, often sufficing in the absence of

exact, analytic solutions.

2.1 Objective function

Utilizing the finite difference formula for the derivative and equation is the algorithm’s primary concept

(1) we obtain,
y(xj)− y(xj−1)

h
≈ f(xj−1, y(xj−1)),

thus,
yj − yj−1

h
≈ f

(
xj−1, yj−1

)
,

consequently, we have to consider the error formula:
[
yj − yj−1

h
− f

(
xj−1, yj−1)

)]2
.

The objective function, associated to Y = (y1, y2, ..., yd) will be:

F (Y ) =

d∑

j=1

[
yj − yj−1

h
− f

(
xj−1, yj−1

)]2
. (2)

2.2 Consistency

We are interested in the calculation of Y = (y1, y2, ..., yd) which minimizes the objective function equation

(2). We have from Taylor’s formula order 1;

yj = yj−1 + hy′j−1 +O
(
h2
)
, j = 1, · · · d.

So,
yj − yj−1

h
= y′j−1 +O(h)
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If we subtract f(xj−1, yj−1) from both sides of last equation, we obtain

yj − yj−1
h

− f(xj−1, yj−1) = y′j−1 − f(xj−1, yj−1) +O(h), j = 1, · · · d

The last relation shows that the final value Y = (y1, y2, · · · , yd) is an approximate solution of IVP, for small

value of h.

3 BAT ALGORITHM OVERVIEW

Yang introduced the bat method in 2010 [23]. Given that microbats are capable of producing high echolo-

cation, it mimics their echolocation behavior. This advantageuse algorithm may be summarized as [21].

3.1 Idealized rules of BA

1) All bats sense distance via echolocation, and they also somehow magically ’know’ the difference

between background obstacles and food/prey.

2) Bats look for food by flying randomly at position xi at velocity vi, fixed frequency fmin, changing

wavelength λ, and loudness A0. Depending on how close their target is, they may automatically

modify the wavelength (or frequency) and rate of pulse emission r ∈ [0, 1].

3) We assume that the loudness changes from a big (positive) A0 to a minimal constant value Amin, even

though it might fluctuate in many other ways.

3.2 Mathematical equations

Virtual bats are moved in accordance with the following equations to generate new solutions:

fi = fmin + (fmax − fmin)β

vti = vt−1i +
(
xti + x∗

)
fi

xti = xt−1i + vti

Where β is a random vector selected from a uniform distribution with β ∈ [0, 1]. After comparing every

answer among every bat, x∗ is the current global best position (solution). the equation’s present optimal

solution

xnew = xold + ∂At

where At is the average loudness of all the best at this time step, and ∂ ∈ [−1, 1] is a random value. The

volume may be adjusted to any convenient level since, after a bat has discovered its target, it normally

becomes quieter while its rate of pulse emission rises.
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3.3 Pseudo code of BA
Objective function f(x), x = (x1, ..., xd)

T

Initialize the bat population xi(i = 1, 2, ..., n)and vi

Define pulse frequency fiat xi

Initialize pulse rates riand the loudness Ai

while (t <Maxnumberofiterations)

Generate new solutions by adjusting frequency,

and updating velocities and locations/solutions

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai& f(xi) < f(x∗))

Accept the new solutions

Increase ri and reduce A

end if

Rank the bats and find the current best x∗

end while

Postprocess results and visualization

4 NUMERICAL APPLICATION

All calculations for our experimental investigation were carried out using an Intel Duo Core 2.20 GHz PC

running MSWindow 2007 Professional and the Matlab environment version R2013a compiler. Graphical

and tabular representations of the numerical results are provided. The BA findings are shown in table 2 in

comparison to the precise outcomes for the problem under study as well as, the absolute error. Two kinds

of parameters are required for the issue treatment: the first is connected to BA , and the second is related

to IVP provides. the parameter settings needed to produce the BA is presented via Table 1. Tables 3 and 4

are for computational time results and statistical analysis results respectively.

4.1 Solving Series RL Circuit ODE’s as application

In Figure 1, an inductor and a resistor are linked in series to create the RL circuit. When the switch is

closed, a constant voltage V is applied [1]. The voltage across the resistor is given byVR = Ri. The voltage

across the inductor is given by VL = L
di

dt
. Kirchhoff’s voltage law says that the directed sum of the voltages

around a circuit must be zero. This results in the following differential equation [11]:

Ri+ L
di

dt
= V.
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Fig. 1. The RL circuit diagram

Once the switch is closed, the current in the circuit is not constant. Instead, it will build up from zero to

some steady state. The solution of this differential equation is

i =
V

R
(1− e(−(

R
L
)t)). (3)

Example study: A series RL circuit with R = 50Ω and L = 10H has a constant voltage V = 100V

applied at t = 0 by the closing of a switch. We want to find the current expression in this case, then the

formula 3 can be used here only because the voltage is constant and can not work in the alternative case.

For application needs eq. 4 is given:

i = 2(1− exp(−5t)). (4)

When plotting eq. 4, the graph shows the transition period during which the current adjusts from its initial

value of zero to the final value
V

R
, which is the steady state [10]. The time constant (TC), known as τ of

the function is the time at
R

L
is unity (= 1). Thus for the RL transient, the time constant is τ =

L

R
Seconds

In this example, the time constant, TC, is 0.2 Seconds.

4.2 Related parameters

BA is a tool for optimization. After that, the discretization form of the fundamental differential equation

is converted. When the derivative term in the discretized form is substituted by a difference quotient for

approximations, the differential equation may be transformed into discretization form using the backward

difference formula.

The following are the parameters linked to IVP:

1) The length of the IVP interval, h = (b − a)/ (n+ 1), is an evenly partitioned subinterval of length

(n+ 1).

2) There are nine internal nodes.

3) h = 0.2 is the step size.

4) The differential equation is solved between t > 0 and the initial condition, i = 0 for t = 0.
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Parameter Quantity

Dimension of the search variables (d) 10

Number of generations (N) 1000

Population size (n) 20

Loudness (constant or decreasing) (A) 0.5

Pulse rate (constant or decreasing) (r) 0.5

TABLE 1

Parameters adopted by (BA).

i xi ExactResults NumericalResults AbsoluteError

BA RK4 BA RK4

0 0.00 0.0000 0.0000 0.0010 0.0000 0.001

1 0.14 1.0068 1.0074 1.0079 0.0006 0.0011

2 0.28 1.5068 1.5076 1.5083 0.0008 0.0015

3 0.42 1.7551 1.7560 1.7569 0.0009 0.0018

4 0.56 1.8784 1.8794 1.8805 0.0010 0.0021

5 0.70 1.9396 1.9408 1.9421 0.0012 0.0025

6 0.84 1.9700 1.9715 1.9729 0.0015 0.0029

7 0.98 1.9851 1.9869 1.9884 0.0018 0.0033

8 1.12 1.9926 1.9946 1.9963 0.0020 0.0037

9 1.26 1.9963 1.9986 2.0004 0.0023 0.0041

10 1.40 1.9982 2.0008 2.0028 0.0026 0.0046

TABLE 2

Numerical Results of the Example for d=10

5) The role of the objective

F (y1, y2, ..., y10) =
10∑
j=1

(
yj−yj−1

h − f (xj−1, yj−1)
)2

=
10∑
j=1

(
yj−yj−1

h − yj−1
)2

The parameters adopted by BA in the treated example are summarized in Table 1:

4.3 Numerical results

The comparison between the performances of BA and RK4 face to the exact results are shown in the Table

2 and their graphical representations is in the Figure 2 In both representations of the results confirm that

BA is better than RK4 because it has a very close curve to the exact curve contrary to RK4 method. BA

method offers a very negligible absolute error compared to RK4 method.

The findings of our simulations show that BA is straightforward, adaptable, and simple to apply. It

also saves time by rapidly achieving convergence at an early stage and transitioning from exploration to

exploitation. It provides encouraging best practices for resolving IVP.
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Fig. 2. Application example results.

Algorithm Time

BA 4.687

RK4 5.039

TABLE 3

Average computational time of up to 50xD iterations by the used algorithms using 50 trials for the example

4.4 Computational time results

The average computing time (in seconds) for each of the 50 distinct trials of the chosen algorithms for the

examined case, calculated using the dimensional space D = 10, is shown in Table 3. It is evident that the

BA algorithm maintained a computing time that was competitive when compared to the Range Kutta 4th

(RK4) order approach, which is a significant benefit that stems directly from straightforward population

update processes.

4.5 Statistical analysis

This section of the paper deals with the statistical analysis of data acquired by the proposed BA and

compared to the RK4 technique after demonstrating the advantage of BA with regard to computing

times. These studies should give enough information to understand how BA works better than the RK4

technique. In the dimension D = 10, table 4 presents the mean and standard deviation of the difference

between the computed optimum values and the genuine optimum values. The best-performing algorithm,

according to the results, was BA.
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Algorithm Mean STD

BA 0.8334 0.9570

RK4 0.8339 0.9573

TABLE 4

Statistical results obtained for the studied example over Dim =10.

5 CONCLUSION

This study discusses the usage of standard BA for solving IVPs when it’s applied as a tool to numerically

optimize the IVPs that arise in the field of electrical engineering and are ODEs of the series RL circuit

in the voltage constant case through a selected example. When the precise answers, algorithmic results,

and RK4 method results were compared, it was shown that BA outperformed RK4 method by providing

exact solutions with the least amount of error.

BA excels in handling complex issues and has a remarkable capacity to tackle a wide range of

problems, including highly nonlinear situations. Further research on BA will enhance the algorithm

through profound studies on parameter tuning, parameter control, accelerating coverage, adding Bat

smell observation property, using a wider variety of parameters, conducting more thorough comparison

studies with more open-source algorithms, and so on. Additionally, BA ought to be used in a number of

engineering and industrial optimization applications.
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A Log-Probability-Weighted-Moments type
estimator for the extreme value index in a

truncation scheme.
Souad Benchaira1, Saida Mancer2 and Abdelhakim Necir3

ABSTRACT: The limit theorems of asymptotic behavior of tail index estimators for right truncation Pareto-like data requires some

regularity assumptions either on tail indices (γ1 < γ2) or on the dependence structure condition between the truncation variable and

the interest one. In this paper, we introduce a new estimator for the tail index based on the Log-Probability-Weighted-Moments method

and, getting rid of aforementioned assumptions, we establish its consistency and asymptotic normality. We show, by simulation, that

the newly proposed estimator behaves well both in terms of bias and mean squared error.

Keywords: Empirical process, Extreme value index, Product-limit estimator, Truncated data.

✦

MSC: Primary 62G32, 62G30, Secondary 60G70, 60F17.

1 INTRODUCTION

Let (X∗i , Y
∗
i ) , i = 1, ..., N ≥ 1 be a sample from a couple (X∗, Y ∗) of independent positive random variables

(rv’s) defined over some probability space (Ω,A,P) , with continuous distribution functions (df’s) F ∗ and
G∗ respectively. Suppose that X∗ is right-truncated by Y ∗, in the sense that X∗i is only observed when
X∗i ≤ Y ∗i . Throughout the paper, we will use the notation S(x) := S(∞)−S(x), for any S. We assume that
both right-tail functions F ∗ and G

∗ are regularly varying at infinity with respective tail indices −1/γ1 and
−1/γ2, notation: F ∗ ∈ RV(−1/γ1) and G

∗ ∈ RV(−1/γ2). That is, for any s > 0

F
∗
(st)

F
∗
(t)

→ s−1/γ1 and
G
∗
(st)

G
∗
(t)

→ s−1/γ2 , as t→ ∞. (1.1)

Let us now denote (Xi, Yi) , i = 1, ..., n, to be the observed data, as copies of a couple of rv’s (X,Y ) with
joint df T , corresponding to the truncated sample (X∗i , Y

∗
i ) , i = 1, ..., N, where n = nN is a sequence of

discrete rv’s. By the strong law of the large numbers, we have

nN/N → P (X∗ ≤ Y ∗) =
∫ ∞

0

G
∗
(z) dF ∗ (z) =: p, (1.2)
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as N → ∞, almost surely (a.s.), where p stands for the percentage of the observed data. This property
allows us to assume, without loss of generality, that for any subsequence an of n, we may drop ”a.s.” in
the strong limit an

.→ a ≤ ∞ as N → ∞. For x, y ≥ 0, we have

T (x, y) := p−1
∫ y

0

F ∗ (min (x, z)) dG∗ (z) ,

having (marginal) right-tails

F (x) = −p−1
∫ ∞

x

G
∗
(z) dF

∗
(z) and G (y) = −p−1

∫ ∞

y

F ∗ (z) dG
∗
(z) .

Note that F ∈ RV(−1/γ) and G ∈ RV(−1/γ2), where γ := γ1γ2/ (γ1 + γ2) (see, e.g., [7]). Motivated by an
application to real dataset of lifetimes of automobile brake pads ([13], page 69), recently [7] introduced an
estimator of γ1 defined by

γ̂1 (k1, k2) :=
γ̂2 (k2) γ̂ (k1)

γ̂2 (k2)− γ̂ (k1)
,

where k1 = k1 (n) and k2 = k2 (n) are two distinct sample fractions used, respectively, in Hill’s estimators
([10])

γ̂ (k1) :=
1

k1

k1∑

i=1

log
Xn−i+1:n

Xn−k1:n
and γ̂2 (k2) :=

1

k2

k2∑

i=1

log
Yn−i+1:n

Yn−k2:n
,

of tail indices γ and γ2, with X1:n ≤ ... ≤ Xn:n and Y1:n ≤ ... ≤ Yn:n being the order statistics pertaining to
the samples (X1, ..., Xn) and (Y1, ..., Yn) respectively. [2] considered a single sample fraction k = k1 = k2
satisfying 1 < k < n, k → ∞ and k/n → 0, as N → ∞, and defined the corresponding estimators of γ, γ2
and γ1 by

γ̂ :=
1

k

k

i=1
log

Xn−i+1:n

Xn−k:n
, γ̂2 :=

1

k

k

i=1
log

Yn−i+1:n

Yn−k:n
,

and

γ̂
(GS)
1 :=

1

k

k

i=1

k
j=1 log

Xn−i+1:n

Xn−k:n
log

Yn−j+1:n

Yn−k:n
k
i=1 log

Yn−i+1:nXn−k:n
Yn−k:nXn−i+1:n

.

Assuming regular variation conditions (1.1) and the tail dependence assumption (see, e.g., [16]) , they also
provided a Gaussian representation is terms of a two-parameter Wiener process which leads to asymptotic
normality of γ̂(GS)

1 . More recently, [3] proposed a new estimation method based on the product-limit
estimator of underlying df F ∗, to derive the following estimator

γ̂
(BMN)
1 :=

(
k∑

i=1

F ∗n (Xn−i+1:n)

Cn (Xn−i+1:n)

)−1 k∑

i=1

F ∗n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
,

where
F ∗n (x) :=

∏

i:Xi>x

exp

{
− 1

nCn (Xi)

}
,

is the so-called product-limit Woodroofe’s estimator [18] of df F ∗ and Cn (x) := n−1
n∑

i=1
I{Xi≤x≤Yi}, where

IA stands for the indicator function of set A. The authors also established the consistency and asymptotic
normality of their estimator but by considering only the case γ1 < γ2. More precisely

√
k
(
γ̂
(BMN)
1 − γ1

) D→ N
(
µ, σ21

)
, as n→ ∞,

where
σ21 := γ2 (1 + (γ1/γ2))

(
1 + (γ1/γ2)

2
)
/ (1− (γ1/γ2)) .
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The bias reduction of this estimator was addressed in [4], [3], [11] and more recently in [14]. For their part,
[19] proposed a similar estimator to γ̂(BMN)

1 (with deterministic threshold) and established its asymptotic
normality by assuming condition γ1 < γ2 as well. Although this condition seems reasonable, it is better that
it is not imposed. In conclusion, as mentioned above, the asymptotic behavior of the already proposed
estimators was studied either by making restriction of tail indices or by assuming the tail dependence
condition between the truncation and truncated rv’s. To get rid of these assumptions, we propose an
alternative estimation method that we next give their details.

1.1 New estimator for the tail index γ1
We have already noticed that both two estimators of the tail index γ1, given by [3] and [19], are based on
the nonparametric product-limit estimators of the underlying df F ∗. Although , this approach provides
good estimators in terms of bias and the root mean squared error (rmse), their corresponding consistency
and asymptotic normality are valid only for Pareto-type models satisfying assumption γ1 < γ2. Then our
main goal is to define an estimator for γ1 that works for both γ1 < γ2 and γ1 ≥ γ2. To this end, we introduce
a new estimation method inspired by the log probability weighted moments (LPWM) estimation method,
for complete data, given recently by [5]. Let us define the following ratio of tail expectations

Lt (r, s) :=
E
[(
G (X)

)r
(log(X/t))s | X > t

]

E
[(
G (X)

)r | X > t
] , r, s ≥ 0, t > 0.

For suitable values of r and s with large t, the ratio Lt (r, s) serve us to estimate the tail indices (γ, β, γ2)
and also the second-order parameters (ρF , ρH , ρG) , given in (2.1) and (2.2) , which is out of scope of the
paper. Indeed, we showed in Proposition 6.1, that

Lt (r, s) →
(

γ1γ

(1 + r) γ1 − rγ

)s

Γ (s+ 1) , as t→ ∞,

where Γ : z →
∫∞
0 xz−1e−xdx, z > 0, is the usual gamma function. In particular, we have

γt := Lt (0, 1) =

∫∞
t log (x/t) dF (x)

F (t)
→ γ, as t→ ∞

and

βt := Lt (1, 1) =

∫∞
t G (x) log (x/t) dF (x)∫∞

t G (x) dF (x)
→ β, as t→ ∞,

where
β :=

γ1γ

2γ1 − γ
=

γ1γ2
2γ1 + γ2

.

This mean that

H (x) :=

∫∞
x G (x) dF (x)∫∞
0 G (x) dF (x)

is regularly varying with at infinity with tail index −1/β. It is clear that the above β−formula, implies that

γ1 =
βγ

2β − γ
,

which will used to estimate γ1 by means of Hill’s estimators γ̂ and β̂ that will be defined below. To this
end, let us t = Xn−k:n and then replace, in βt above, both F and G by their respective empirical df’s

Fn (x) := n−1
n∑

i=1

I{Xi≤x} and Gn (y) := n−1
n∑

i=1

I{Yi≤y},

to get ∫∞
Xn−k:n

Gn (x) log (x/Xn−k:n) dFn (x)∫∞
Xn−k:n

Gn (x) dFn (x)
,



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 22–46 25

which equals

β̂ :=

k∑

i=1

ci,n log (Xn−i+1:n/Xn−k:n) ,

where

ci,n :=
Gn (Xn−i+1:n)∑k
i=1Gn (Xn−i+1:n)

.

Finally, by using the above formula of γ1, we end up with a new estimator for γ1 as follows

γ̂1 :=
β̂γ̂

2β̂ − γ̂
. (1.3)

To establish the consistency and asymptotic normality of γ̂1, we will make use the tail empirical process
technics given in [9], which is used recently by [4] in the truncation case. The tail empirical process
corresponding to df F, by

D(1)
n (x) :=M (1)

n (x)− r1 (x) , for x ≥ 1,

where

M (1)
n (x) :=

∫∞
xXn−k:n

dFn (w)∫∞
Xn−k:n

dFn (w)
=
n

k
Fn (Xn−k:nx) and r1 (x) := x−1/γ ,

so that
γ̂ − γ =

∫ ∞

1

x−1D(1)
n (x) dx.

Likewise, we define the tail empirical process corresponding to df H, by

D(2)
n (x) :=M (2)

n (x)− r2 (x) , 2, for x ≥ 1,

where

M (2)
n (x) :=

Hn (xXn−k:n)

Hn (Xn−k:n)
=

∫∞
xXn−k:n

Gn (w) dFn (w)∫∞
Xn−k:n

Gn (w) dFn (w)
and r2 (x) := x−1/β,

so that
β̂ − β =

∫ ∞

1

x−1D(2)
n (x) dx.

By using formula (1.3) , we get

γ̂1 − γ1 =

∫ ∞

1

x−1
(
cn1D

(1)
n (x)− cn2D

(2)
n (x)

)
dx, (1.4)

where

cn1 :=
2β2

(γ̂ − 2β) (γ − 2β)
and cn2 :=

γ̂2(
γ̂ − 2β̂

)
(γ̂ − 2β)

.

By means of previous functional representations and weak approximations corresponding to D
(1)
n (x)

and D
(2)
n (x) below, we establish both consistency and asymptotic normality of γ̂1.The rest of the paper is

organized as follows. In Section 2, we state our main results, namely consistency and asymptotic normality
of γ̂1. A simulation study is carried out, in Section 3, to illustrate the performance of γ̂1. The proofs are
postponed to Appendix 5 whereas some results that are instrumental to our needs are gathered in the
Appendix 6.
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2 MAIN RESULTS

Next we need to the usual second-order condition that specify the rate of convergence of regular variation
functions. More precisely for a given function φ ∈ RV(−1/α), we assume that

1

Aφ (t)

(
φ (tx)

φ (t)
− x−1/α

)
→ x−1/α

xτ/α − 1

τα
, for x > 0,

where |Aφ| is regularly varying (at infinity) with tail index (second-order parameter) τ/α < 0 [?, see, e.g.,
]]deHS96. A function φ satisfying this condition is denoted φ ∈ 2RV(−1/α) (Aφ, τ) . For convenience, we
set Aφ := Aφ ◦ UF , where UL :=

(
1/L

)← with

L← (u) := inf {v : L (v) ≥ u} , for 0 < u < 1,

denoting the (left-continuous) the quantile function pertaining to a (right-continuous) df L. Since F ∈
RV(−1/γ) and G ∈ RV(−1/γ2), then we may assume

F ∈ 2RV(−1/γ) (AF , ρF ) and G ∈ 2RV(−1/γ2) (AG, ρG) . (2.1)

Since H ∈ RV(−1/β), thus we may also suppose that

H ∈ 2RV(−1/β) (AH , ρH) . (2.2)

Theorem 2.1. Assume that condition (2.1) holds. Let k = kn be an integer sequence satisfying k → ∞ and k/n→
0. In addition, if condition (2.2) is fulfilled, then, there exists a sequence of Wiener processes {Wn (x) , x ≥ 0}n≥1 ,
such that for every small 0 < ν < 1, we have

sup
x≥1

xν
∣∣∣D(i)

n (x)
∣∣∣ P→ 0, i = 1, 2. (2.3)

Moreover
sup
x≥1

xν
∣∣∣
√
kD(i)

n (x)− L(i)
n (x)−

√
kB(i)

n (x)
∣∣∣ P→ 0, i = 1, 2, (2.4)

provided that
√
kAF (n/k) ,

√
kAG (n/k) and

√
kAH (n/k) are asymptotically bounded, where

L(1)
n (x) :=Wn

(
x−1/γ

)
− x−1/γWn (1)

and
(β/γ)L(2)

n (x) := x−1/β
{
x1/γWn

(
x−1/γ

)
−Wn (1)

}

+(1− γ/β)

∫ x−1/γ

0

sγ/β−2Wn (s) ds

− (1− γ/β)x−1/β
∫ 1

0

sγ/β−2Wn (s) ds,

with

B(1)
n (x) := x−1/γ

xρF /γ − 1

ρFγ
AF (n/k) and B(2)

n (x) := x−1/β
xρH/β − 1

ρHβ
AH (n/k) .

Thereby, in view of the representation (1.4) and by using respectively the two results of Theorem 2.1 we
end up with the consistency and asymptotic normality of γ̂1, given in the following theorem.

Theorem 2.2. Assume that (2.1) holds. Let k = kn be an integer sequence satisfying k → ∞ and k/n→ 0, then

γ̂1
P→ γ1, as N → ∞.

In addition, if (2.2) is fulfilled, then
√
k (γ̂1 − γ1) = Zn1 + Zn2 + µ+ oP (1) ,
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where
(γ − 2β)2

2β2
Zn1 := γ

∫ 1

0

s−1Wn (s) ds− γWn (1)

and

−(γ − 2β)2

γ2
Zn2 := (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds,

provided that
√
kAG (n/k) = O (1) ,

√
kAF (n/k) → λF and

√
kAH (n/k) → λH , where

µ :=
2β2 (γ − 2β)−2 λF

1− ρF
− γ2 (γ − 2β)−2 λH

1− ρH
. (2.5)

This implies that √
k (γ̂1 − γ1) → N

(
µ, σ2

)
, as N → ∞,

where

σ22 :=
γ6β

(
β2 − 2βγ + 2γ2

)

(2γ − β)3 (γ − 2β)4
.

Remark 2.3. The complete data case corresponds to the situation when β ≡ γ, in which case we have
γ ≡ γ1. It follows that

√
k (γ̂1 − γ1)

D→ N
(
λ/ (1− ρF ) , γ

2
1

)
, as N → ∞, which meets the asymptotic

normality of the classical Hill estimator [10], see for instance, Theorem 3.2.5 in [9].

Remark 2.4. In terms of the tail indices γ1 and γ2, we have

σ22 = γ32

(γ1/γ2)
2 (2 (γ1/γ2) + 1)4

(
5 (γ1/γ2)

2 + 4γ1/γ2 + 1
)

(γ1/γ2 + 1) (3 (γ1/γ2) + 1)3
.

Remark 2.5. We show that the ratio between the asymptotic variances σ21 and σ22 equals

σ21
σ22

=

(
1− x3

)
(2x+ 1)4

(
5x2 + 4x+ 1

)

(1 + x2) (3x+ 1)3
, where x := γ1/γ2,

and {
1 < σ21/σ

2
2 < 3. 2, for 0 < γ1/γ2 < 0.94125

0 < σ21/σ
2
2 < 1, for 0.94125 < γ1/γ2 < 1.

The curve of ratio σ21/σ
2
2 in the interval (0, 1) , given in Figure ??, illustrates the previous inequalities.

We conclude that γ̂1 is asymptotically more efficient than γ̂
(BMN)
1 for 0 < γ1/γ2 < 0.94125, otherwise

γ̂
(BMN)
1 is asymptotically more efficient than γ̂1. It is worth mentioning that the comparison is made for

0 < γ1/γ2 < 1, because the asymptotic normality of γ̂(BMN)
1 is established only for 0 < γ1 < γ2.

3 SIMULATION STUDY

In this section, we check the finite sample behavior of γ̂1 compared with γ̂
(BMN)
1 and γ̂

(GS)
1 in terms of

absolute bias and rmse. To this end, let us consider sets of truncated and truncation data drawn from Burr
(γ, δ) and Fréchet (γ) models with respective df’s

F (x) =
(
1 + x1/δ

)−δ/γ
, x ≥ 0, δ > 0, γ > 0;

and
F (x) = 1− exp

(
−x−1/γ

)
, x ≥ 0, γ > 0.

Let consider the following scenarios that correspond to df’s F ∗ and G∗:
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Fig. 2.1. Plotting of the ratio f (x) := σ21/σ
2
2 as function of x := γ1/γ2 on the interval (0, 1) .

γ1 = 0.6, δ = 1/4
p

30% (90%) 40% (60%)
γ2

[S1] 0.257 (5.4) 0.093 (3.843) [S2]
[S3] 0.167 (4.701) 0.420 (5.272) [S4]

TABLE 1. Choices of the tail indices and corresponding percentages of observed sample for each scenario.

• [S1] Burr (γ1, δ) truncated by Burr(γ2, δ)
• [S2] Fréchet (γ1) truncated by Fréchet (γ2)
• [S3] Fréchet(γ1) truncated by Burr(γ2, δ)
• [S4] Burr(γ1, δ) truncated by Fréchet(γ2)

First, we fix the values 0.6 for γ1 and 1/4 for δ, then choose different values for γ2 so that the percentage of
observed data p given in (1.2), be around of 40% and 60% for both scenarios [S2] and [S4] while we choose
30% and 90% for both scenarios [S1] and [S3]. The choice of parameters provides couples of (γ1, γ2) of
different order, that is γ1 < γ2 and γ1 > γ2, which may be obtained by numerically solve, in γ2, Equation
(1.2). The results are recapitulated in the following table:
Thereby, for each scenario, we choose two triplets of parameters (γ1, γ2, p) as follows:

• S1 : (γ1, γ2, p) = (0.6, 0.257, 30%) ; (0.6, 4.701.4, 90%)
• S2 : (γ1, γ2, p) = (0.6, 0.093, 40%) ; (0.6, 3.843, 60%)
• S3 : (γ1, γ2, p) = (0.6, 0.167, 30%) ; (0.6, 4.701, 90%)
• S4 : (γ1, γ2, p) = (0.6, 0.420, 40%) ; (0.6, 5.272, 60%)

We vary the common size N = 300, 500, 1000, 1500 of both samples (X1, ...,XN ) and (Y1, ...,YN ) , then
for each size, we generate 1000 independent replicates. For the selection of the optimal numbers of upper
order statistics used in the computation of the three aforementioned estimators, we apply the algorithm of
[15] page 137. Our illustrations and comparison are made with respect to the absolute biases (abias) and
rmse’s, which are summarized in the four Tables 2-3-4-5 and the eight Figures 3.2-3.3-3.4-3.5-3.6-3.7-3.8-3.9.
In the light of all tables and Figures , the overall conclusion is that γ̂1 behaves well both in terms of bias
and rmse and having a finite sample behavior almost close to γ̂(BMN)

1 . Moreover, both the two estimators
perform better than γ̂

(GS)
1 in particular in small sample case and for small percentage of observed data p,

on the other termes the later becomes unstable for small sample sizes. On the other hand, as noted in two
Remarks 2.4 and 2.5, that γ̂1 is asymptotically more efficient than γ̂(BMN)

1 for ”almost” all positive couples
(γ1, γ2) , which also makes our new estimator more advantageous regarding to the two other ones.
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p = 0.3

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 90 0.398 0.448 0.403 0.442 0.445 4.911
500 149 0.236 0.469 0.226 0.320 0.418 3.989

1000 300 0.187 0.459 0.171 0.276 0.460 2.731
1500 450 0.144 0.362 0.144 0.276 0.342 1.830

p = 0.9
300 270 0.007 0.138 0.004 0.138 0.042 0.346
500 449 0.001 0.110 0.002 0.110 0.016 0.172

1000 899 0.008 0.076 0.005 0.076 0.021 0.117
1500 1350 0.004 0.065 0.002 0.065 0.019 0.098

TABLE 2. Absolute biases and rmse’s for the tail index estimators correspond to scenario S1 based on 1000
right-truncated samples.

p = 0.4

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 125 0.340 0.577 0.319 0.361 0.606 5.983
500 208 0.345 0.565 0.273 0.327 0.607 5.896

1000 416 0.264 0.509 0.243 0.298 0.428 1.326
1500 626 0.212 0.423 0.218 0.279 0.440 1.760

p = 0.6
300 182 0.008 0.163 0.012 0.164 0.054 7.398
500 304 0.010 0.127 0.014 0.127 0.001 0.208

1000 608 0.008 0.091 0.010 0.091 0.004 0.145
1500 912 0.009 0.076 0.011 0.077 0.004 0.124

TABLE 3. Absolute biases and rmse’s for the tail index estimators correspond to scenario S2, based on
1000 right-truncated samples.

4 CONCLUDING NOTES

By using the well-known probability weighted moment estimation method, we derived a new estimator
of the tail index for right truncated heavy-tailed data and established its consistency and asymptotic
normality without additional assumptions on the underlying df’s. Moreover, the proposed method may
also serve to estimate the second order parameter ρF which is of practical relevance in extreme value

p = 0.3

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 99 0.371 0.490 0.357 0.411 0.681 4.827
500 165 0.226 0.574 0.233 0.310 0.599 1.803

1000 331 0.181 0.465 0.165 0.278 0.357 2.912
1500 498 0.179 0.401 0.153 0.267 0.422 1.829

p = 0.9
300 273 0.023 0.147 0.027 0.147 0.513 11.574
500 456 0.011 0.110 0.014 0.110 0.024 0.158

1000 911 0.008 0.078 0.010 0.078 0.011 0.118
1500 1367 0.010 0.067 0.012 0.067 0.005 0.098

TABLE 4. Absolute biases and rmse’s for the tail index estimators correspond to scenario S3 , based on
1000 right-truncated samples.
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p = 0.4

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 121 0.177 0.494 0.170 0.317 0.975 11.564
500 201 0.080 0.594 0.112 0.297 0.288 3.733

1000 403 0.059 0.327 0.093 0.247 0.189 1.231
1500 604 0.047 0.256 0.062 0.246 0.164 3.483

p = 0.6
300 180 0.011 0.158 0.007 0.156 0.057 5.154
500 300 0.008 0.126 0.005 0.125 0.170 4.699

1000 601 0.006 0.091 0.002 0.091 0.011 0.150
1500 902 0.006 0.076 0.003 0.076 0.002 0.116

TABLE 5. Absolute biases and rmse’s for the tail index estimators correspond to scenario S4 , based on
1000 right-truncated samples.
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Fig. 3.2. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S1 : ( γ1 = 0.6, γ2 = 5.4 and p = 90%) based on 1000 samples of size 500
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Fig. 3.3. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S1 : ( γ1 = 0.6, γ2 = 0.257 and p = 30%) based on 1000 samples of size 500
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Fig. 3.4. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂
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1 (black),

corresponding to scenario S2 : ( γ1 = 0.6, γ2 = 3.843 and p = 60%) based on 1000 samples of size 500
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Fig. 3.5. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S2 : ( γ1 = 0.6, γ2 = 0.093 and p = 40%) based on 1000 samples of size 500

analysis due its crucial importance in selecting the optimal number of upper order statistics k in tail
index estimation (see, e.g., [9]) and to reduce the bias of such estimation. The asymptotic behavior of the
obtained reduced bias estimator may be also established by means of the two tail empirical processes
D

(i)
n (x) , i = 1, 2. This problem will be addressed in our future work.
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Fig. 3.6. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S3 : ( γ1 = 0.6, γ2 = 4.701 and p = 90%) based on 1000 samples of size 500
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Fig. 3.7. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S3 : ( γ1 = 0.6, γ2 = 0.167 and p = 30%) based on 1000 samples of size 500
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Fig. 3.8. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S4 : ( γ1 = 0.6, γ2 = 5.272 and p = 60%) based on 1000 samples of size 500
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Fig. 3.9. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S4 : ( γ1 = 0.6, γ2 = 0.420 and p = 40%) based on 1000 samples of size 500
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5 APPENDIX A
It is worth mentioning that, since n/N → p a.s. as N → ∞, then for a random sequence ZN

P→ Z as
N → ∞, we have Zn

P→ Z as N → ∞, too. The proof of this matter is similar as that is used in Lemma 3.7
in [3]. In other words, the results regarding to convergence in probability of a sequence of rv’s indexed
by N can also be used by indexing by n.

5.1 Proof of Theorem 2.1
We will only show the results of the Theorem for i = 2, since those of case i = 1 become trivial when
replacing β by γ. To start, first recall that D(2)

n (x) =M
(2)
n (x)− x−1/β, x ≥ 1, where

M (2)
n (x) =

Hn (xXn−k:n)

Hn (Xn−k:n)
,

and

Hn (x) =

∫∞
x Gn (w) dFn (w)∫∞
0 Gn (w) dFn (w)

.

Observe that M (2)
n (x) = ∆

(2)
n (x) /∆

(2)
n (1) , where

∆(2)
n (x) :=

n

k

∫∞
xXn−k:n

Gn (w) dFn (w)

Gn (Xn−k:n)
.
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Thus, we may write

D(2)
n (x) =

∆
(2)
n (x)− (β/γ)x−1/β

∆
(2)
n (1)

− x−1/β
∆

(2)
n (1)− β/γ

∆
(2)
n (1)

. (5.1)

Let ak := UF (n/k) and decompose ∆
(2)
n (x)− (β/γ)x−1/β into the sum of

Tn1 (x) :=
n

k

(
1

Gn (Xn−k:n)
− 1

G (Xn−k:n)

)∫ ∞

xXn−k:n

Gn (w) dFn (w) ,

Tn2 (x) :=
n/k

G (Xn−k:n)

∫ ∞

xXn−k:n

(
Gn (w)−G (w)

)
dFn (w) ,

Tn3 (x) :=
n

k

(
1

G (Xn−k:n)
− 1

G (ak)

)∫ ∞

xXn−k:n

G (w) dFn (w) ,

Tn4 (x) :=
n/k

G (ak)

∫ xak

xXn−k:n

G (w) dFn (w) ,

Tn5 (x) :=
n/k

G (ak)

∫ ∞

xak

G (w) d (Fn (w)− F (w))

and
Tn6 (x) :=

n/k

G (ak)

∫ ∞

xak

G (w) dF (w)− (β/γ)x−1/β.

Making use of (5.1) , we way write

∆(2)
n (1)D(2)

n (x) =

5∑

i=1

(
Tni (x)− x−1/βTni (1)

)
+ B̃(2)

n (x) , (5.2)

where
B̃(2)
n (x) := Tn6 (x)− x−1/βTn6 (1)

=
n/k

G (ak)

∫ ∞

xak

G (w) dF (w)− x−1/β
n/k

G (ak)

∫ ∞

ak

G (w) dF (w) .

Next, we show that for every sufficiently small 0 < η, ϵ < 1/2, we have
√
kTni(x) = oP (ϱ (x)) , for i = 1, 2, (5.3)

√
k (Tn3(x) + Tn4(x) + Tn5(x)) = L(2)

n (x) + oP (ϱ (x)) (5.4)

and

B̃(2)
n (x) = x−1/β

(
xρH/β − 1

ρHγ
+ o (xϵ)

)
AH (n/k) , (5.5)

uniformly over x ≥ 1, where ϱ (x) = x−η/β+ϵ and L(2) (x) is the Gaussian process given in Theorem 2.1.
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5.1.1 Preliminaries
Note that F ∗ and G∗ are continuous, then it is easy to verify that both df’s F and G are as well, therefore
the two rv’s U := F (X) and V := G (Y ) are uniformly distributed on (0, 1) . Let

Un (s) := n−1
n∑

i=1

I{Ui≤s} and Vn (s) := n−1
n∑

i=1

I{Vi≤s},

denote the uniform empirical df’s pertaining to the samples

Ui := F (Xi) and Vi := G (Yi) , i = 1, ..., n,

respectively. We have F (x) = F (x+) , then

I
(
Ui ≤ F (x)

)
= I

(
F (Xi) ≤ F (x+)

)

and since F is decreasing then this latter equals

I (Xi ≥ x+) = 1− I (Xi < x+) = 1− I (Xi ≤ x) .

By using similar arguments, we end up with

I (Yi ≥ y+) = 1− I (Yi < y+) = 1− I (Yi ≤ y) .

Hence for x, y ≥ 0, we may write

Fn (y) = Un

(
F (x)

)
and Gn (y) = Vn

(
G (y)

)
. (5.6)

Next, we will use a useful weak approximation, due to [6], corresponding to the uniform tail empirical
processes, saying that: in the probability space (Ω,A,P) , there exists a sequence of standard Wiener
precesses {Wn (x) , x ≥ 0} , such that, for every 0 < η < 1/2 and M > 0, we have

sup
0<s≤M

s−η
∣∣∣∣
√
k

(
n

k
Un

(
k

n
s

)
− s

)
−Wn (s)

∣∣∣∣ = oP (1) . (5.7)

On the other hand, we have sup0<s≤M s−η |Wn (s)| = OP (1) [?, see, e.g., example 1.8 in ]]Alex86, which
implies that

sup
0<s≤M

s−η
∣∣∣∣
√
k

(
n

k
Un

(
k

n
s

)
− s

)∣∣∣∣ = OP (1) . (5.8)

The previous result remains valid when replacing Un by Vn, that is

sup
0<s≤M

s−η
∣∣∣∣
√
k

(
n

k
Vn

(
k

n
s

)
− s

)∣∣∣∣ = OP (1) . (5.9)

5.1.2 Asymptotic behavior of Tn1
Note that F (ak) = k/n, and let us write

√
kTn1 = −

√
k
(
Gn (Xn−k:n)−G (Xn−k:n)

)

Gn (Xn−k:n)

×
∫ ∞

x

Gn (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Observe that, by letting s =
n

k
G (Xn−k:n) , we have

√
k
(
Gn (Xn−k:n)−G (Xn−k:n)

)
=
k

n

√
k

(
n

k
Vn

(
k

n
s

)
− s

)
,

which, by using the result (5.9) , equals

OP (1) (k/n) sη = OP (1) (k/n)1−η
(
G (Xn−k:n)

)η
,
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for some fixed 0 < η < 1/2. It is worth mentioning that, since Xi < Yi, for i = 1, ..., n, then Xn:n < Yn:n,
which implies that V1:n = G (Yn:n) < G (Xn−k:n) < 1, therefore

G (Xn−k:n)

Gn (Xn−k:n)
=

G (Xn−k:n)

Vn

(
G (Xn−k:n)

) < sup
V1:n≤s<1

s

Vn (s)
,

which, from Proposition 6.2, is equal to OP (1) . On the other hand, Gn (w) = 0, for w ≥ Yn:n, it follows
that √

kTn1 = OP (1)

(
k/n

G (Xn−k:n)

)1−η ∫ Yn:n/Xn−k:n

x

Gn (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Observe now, that for any w ≥ 1, we have

Gn (wXn−k:n)

G (Xn−k:n)
=

Vn

(
G (wXn−k:n)

)

G (wXn−k:n)
,

and, since G (wXn−k:n) ≤ G (Xn−k:n) , then in view of Proposition 6.2 the latter ratio is less than or equal
to supV1:n≤s<1 Vn (s) /s = OP (1) , hence

√
kTn1 = OP (1)

(
k/n

G (Xn−k:n)

)1−η ∫ ∞

x

G (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Next, we require to the following Potter-type inequalities [?, see, e.g., Proposition B.1.10, page 369 in]]deHF06
corresponding to regular variation functions.

Proposition 5.1. Let g ∈ RV(α) with α ∈ R. Then, for any sufficiently small ϵ > 0, there exists t0 = t0 (ϵ) > 0,
such that |g (ts) /g (t)− s−α| ≤ ϵs−αmax (s−ϵ, sϵ) , for any t ≥ t0 and s > 0.

For the sake of simplicity, we set xν±ϵ := xν max (x−ϵ, xϵ) and ±ϵc = ±ϵ for ϵ ↓ 0 and any real constants
ν and c. Note that Xn−k:n/ak

P→ 1, then by using the previous proposition, we readily show that
G (Xn−k:n) /G (ak) = OP (1) and

G (wXn−k:n)

G (Xn−k:n)
= OP

(
w−1/γ2+ϵ

)
, as N → ∞,

uniformly on w ≥ 1. Thus

√
kTn1 = OP (1)

(
k/n

G (ak)

)1−η ∫ ∞

x

w−1/γ2+ϵd
Fn (wXn−k:n)

F (ak)
.

Recall that , since Fn (w) = 0, for w ≥ Xn:n and Fn (wXn−k:n) = Un

(
F (wXn−k:n)

)
, then by using an

integration by parts to the latter integral and then Proposition 6.2, yields

√
kTn1 = OP (1)

(
k/n

G (ak)

)1−η

×
{
x−1/γ2+ϵF (xXn−k:n)

F (ak)
+

∫ ∞

x

F (wXn−k:n)

F (ak)
dw−1/γ2+ϵ

}
.

Making use of Proposition 5.1 and after integration, we show that both two quantities between brackets
equal OP

(
x−1/γ1−1/γ+ϵ

)
= OP (ϱ (x)) uniformly on x ≥ 1. On the hand in view of Proposition 6.4, we have

G (ak) = O (1) (k/n)γ/γ2 , then (
k/n

G (ak)

)1−η
= (k/n)(1−η)(1−γ/γ2) .

Recall that 0 < η < 1/2 and 0 < γ/γ2 < 1, then (k/n)(1−η)(1−γ/γ2) = o (1) , it follows that
√
kTn1 = oP (ϱ (x)) ,

uniformly on x ≥ 1.
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5.1.3 Asymptotic behavior of Tn2
It is clear that

√
kTn2 =

1

G (Xn−k:n)

∫ ∞

x

√
k
(
Gn (wXn−k:n)−G (wXn−k:n)

)
d
Fn (wXn−k:n)

F (ak)
.

For convenience, we set bk := UG (n/k) so that G (bk) = k/n. It is easy to verify, from (5.6) , that
n

k

√
k
(
Gn (wXn−k:n)−G (wXn−k:n)

)

=
√
k

(
n

k
Vn

(
k

n
G (wXn−k:n) /G (bk)

)
−G (wXn−k:n) /G (bk)

)
,

which, by using (5.9) , equals OP (1)
(
G (wXn−k:n) /bk

)η
, uniformly on w ≥ 1, therefore

√
kTn2 = OP (1)

k/n

G (Xn−k:n)

∫ ∞

x

(
G (wXn−k:n) /G (bk)

)η
d
Fn (wXn−k:n)

F (ak)
.

By using the routine manipulations of two Propositions 6.2 and 5.1, we get

√
kTn2 = OP (1)

k/n

G (Xn−k:n)

(
Xn−k:n
bk

)−η/γ2±ϵ ∫ ∞

x

w−η/γ2+ϵdw−1/γ+ϵ.

Recall that Xn−k:n = (1 + oP (1)) ak, then by making use of Proposition 6.4, it is easy to verify that

k/n

G (Xn−k:n)

(
Xn−k:n
bk

)−η/γ2±ϵ
= OP (1) (k/n)(1−η)(1−γ/γ2)±ϵ .

Since γ/γ2 < 1 and
∫∞
x w−η/γ2+ϵdw−1/γ+ϵ = OP (ϱ (x)) , then

√
kTn2 = oP (ϱ (x)) , uniformly on x ≥ 1.

5.1.4 Asymptotic behavior of Tn3
Observe now √

kTn3 =
√
k

(
G (ak)

G (Xn−k:n)
− 1

)∫ ∞

xXn−k:n

G (w)

G (ak)
d
Fn (w)

F (ak)
,

and √
k

(
G (ak)

G (Xn−k:n)
− 1

)

=
√
k

(
G (ak)

G (Xn−k:n)
−
(

ak
Xn−k:n

)−1/γ2)
+
√
k

((
ak

Xn−k:n

)−1/γ2
− 1

)

=: In1 + In2.

Next we show that In1 = oP (1) . Indeed, we have G ∈ 2RV(−1/γ2) (AG, ρG) which implies that for possibly
different functions ÃG, with ÃG (t) ∼ AG (t) , as t → ∞, and for each 0 < ϵ < 1, there exists t0 = t0 (ϵ) ,
such that for all tz ≥ t0 we have

∣∣∣∣∣
G (tz) /G (t)− z−1/γ2

ÃG (t)
− z−1/γ2

zρG/γ2 − 1

ρGγ2

∣∣∣∣∣ ≤ ϵz−1/γ2±ϵ. (5.10)

[?, see, e.g., Proposition 4 and Remark 1 in]]HJ-2011. We will use this inequality with t = tn = Xn−k:n and
z = zn = ak/Xn−k:n. Since zn = (1 + oP (1)) then zρG/γ2

n − 1 = oP (1) , it follows that

G (ak)

G (Xn−k:n)
−
(

ak
Xn−k:n

)−1/γ2
= oP (1) |AG| (Xn−k:n) .
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Since |AG| is regularly varying, then AG (Xn−k:n) = (1 + oP (1))AG (ak) . Recall that by assumption√
kAG (ak) =

√
kAG (n/k) = O (1) , it follows that In1 = oP (1) . The term In2 may be decomposed into

√
k

((
Xn−k:n
ak

)1/γ2

−
(
nUk:n

k

)−γ/γ2)
+
√
k

((
nUk:n

k

)−γ/γ2
− 1

)
.

By using similar arguments as used for In1, we also show that the first of the previous quantity equals
oP (1) . For the second term, we use assertion (i) in Proposition 6.2, to get

√
k

((
nUk:n

k

)−γ/γ2
− 1

)
=

γ

γ2
Wn (1) + oP (1) .

It is now easy to show that
∫ ∞

xXn−k:n

G (w)

G (ak)
d
Fn (w)

F (ak)
=
x−1/γ2−1/γ

γ/γ2 + 1
+ oP (ϱ (x)) ,

therefore √
kTn3 =

γ

γ + γ2
x−1/γ2−1/γWn (1) + oP (ϱ (x)) ,

uniformly on x ≥ 1, which may be rewritten in terms of tail index β = γ1γ/ (2γ1 − γ) , into
√
kTn3 = (1− β/γ)x−1/βWn (1) + oP (ϱ (x)) . (5.11)

5.1.5 Asymptotic behavior of Tn4
Let us write √

kTn4(x) = −
√
k

∫ x

xXn−k:n/ak

G (wak)

G (ak)
d
Fn (wak)

F (ak)
,

which may be decomposed into the sum of

√
kT

(1)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

(
G (wak)

G (ak)
− w−1/γ2

)
d
Fn (wak)

F (ak)
,

√
kT

(2)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2d
(
Fn (wak)− F (wak)

F (ak)

)
,

√
kT

(3)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2d
(
F (wak)

F (ak)
− w−1/γ

)

and √
kT

(4)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2dw−1/γ .

We will show that
√
kT

(1)
n4 (x) = oP (ϱ (x)) , the proof of the other terms follow by using similar arguments.

For convenience, we set c−k := min (1, Xn−k:n/ak) and c+k := min (1, Xn−k:n/ak) , and apply Proposition 5.1
(to G), we get

√
kT

(1)
n4 (x) = oP (1)

√
k

∫ xc+k

xc−k

w−1/γ2+ϵd
Fn (wak)

F (ak)
.

Since w−1/γ2+ϵ <
(
xc+k

)−1/γ2+ϵ and c+k = 1 + oP (1) , then

√
kT

(1)
n4 (x) = oP

(
x−1/γ2+ϵ

) √
k
∣∣Fn (xXn−k:n)− Fn (xak)

∣∣
F (ak)

.

Observe that the previous ratio is less than or equal to

√
k

∣∣Fn (xXn−k:n)− F (xXn−k:n)
∣∣

F (ak)
+
√
k

∣∣Fn (xak)− Fn (xak)
∣∣

F (ak)
.
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By applying (5.8) twice, we show that both terms equal OP

(
(k/n)1/2−η x−η/γ+ϵ

)
, it follows that

√
kT

(1)
n4 (x) = oP

(
x−1/γ2−η/γ+ϵ

)
= oP (ϱ (x)) .

For the last term we use an elementary integration to write

√
kT

(4)
n4 (x) =

γ2
γ + γ2

x−1/γ2−1/γ
√
k

((
Xn−k:n
ak

)−1/γ2−1/γ
− 1

)
,

then we make use of assertion (ii) in Proposition 6.4, we obtain
√
kT

(4)
n4 (x) = −x−1/βWn (1) + oP (ϱ (x)) =

√
kTn4(x). (5.12)

5.1.6 Asymptotic behavior of Tn5
Recall that

Tn5 (x) :=
n/k

G (ak)

∫ ∞

xak

G (w) d (Fn (w)− F (w))

The change of variables s = G (w) /G (ak) gives w = UG

(
1/
(
sG (ak)

))
and therefore

Tn5 =
n

k

∫ G(xak)/G(ak)

0

sd

(
Fn

(
UG

(
1

sG (ak)

))
− F

(
UG

(
1

sG (ak)

)))
,

which by an integration by parts may be rewritten into the sum of

T
(1)
n5 :=

n

k

G (xak)

G (ak)

(
Fn (xak)− F (xak)

)

and

T
(2)
n5 := −n

k

∫ G(xak)/G(ak)

0

(
Fn

(
UG

(
1

sG (ak)

))
− F

(
UG

(
1

sG (ak)

)))
ds.

Observe that √
kT

(1)
n5 =

G (xak)

G (ak)

√
k

{
n

k
Un

(
k

n

(n
k
F (xak)

))
− n

k
F (xak)

}
,

and use weak approximation (5.7) to get

√
kT

(1)
n5 =

G (xak)

G (ak)

(
Wn

(n
k
F (xak)

)
+ oP (1)

(n
k
F (xak)

)η)
.

By applying Proposition 5.1 twice (for G and F ), we get
√
kT

(1)
n5 = x−1/γ2Wn

(n
k
F (xak)

)
+ oP

(
x−1/γ2−η/γ+ϵ

)
.

For convenience, we set hn (s) :=
n

k
F
(
UG

(
1

sG(ak)

))
to write

√
kT

(2)
n5 = −

∫ G(xak)/G(ak)

0

√
k

(
n

k
Un

(
k

n
hn (s)

)
− hn (s)

)
ds,

which by using weak approximation (5.7) equals

−
∫ G(xak)/G(ak)

0

Wn (hn (s)) ds+ oP (1)

∫ G(xak)/G(ak)

0

(hn (s))
η ds.

Observe that F
(
UG

(
1/G (ak)

))
= k/n, it follows that

hn (s) = F

(
UG

(
1

sG (ak)

))
/F

(
UG

(
1

G (ak)

))
.
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Note that F ◦ UG (1/·) ∈ RV(γ2/γ) near zero, then by the routine application of Proposition 5.1, we end up
with ∫ G(xak)/G(ak)

0

(hn (s))
η ds = O

(
x−η(1/γ2+1/γ)+ϵ

)
.

Hence, we showed that

√
kTn5 = x−1/γ2Wn

(n
k
F (xak)

)
−
∫ G(xak)/G(ak)

0

Wn (hn (s)) ds+ oP

(
x−η(1/γ2+1/γ)+ϵ

)
.

Observe now that, by using the mean value theorem, we get
∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds =

(
G (xak)

G (ak)
− x−1/γ2

)
Wn (hn (gn (x))) ,

where gn (x) is between G (xak) /G (ak) and x−1/γ2 . It is easy to check that

hn (gn (x)) < (1 + ϵxϵ)x−1/γ , for any x ≥ 1,

it follows that
sup
x≥1

∣∣∣(hn (gn (x)))1/2Wn (hn (gn (x)))
∣∣∣ ≤ sup

0≤u≤1+ϵ
|Wn (u)| ,

which is stochastically bounded, therefore
∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds = OP (1) (hn (gn (x)))
−1/2

∣∣∣∣
G (xak)

G (ak)
− x−1/γ2

∣∣∣∣ ,

uniformly on x ≥ 1. By using the routine manipulations of Proposition 5.1, we show that

G (xak) /G (ak)− x−1/γ2 = o
(
x−1/γ2+ϵ

)
and (hn (gn (x)))

−1/2 = O
(
x−1/(2γ)+ϵ

)
,

thereby ∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds = oP

(
x−1/γ2−1/(2γ)+ϵ

)
= oP (ϱ (x)) ,

because 0 < η < 1/2. Next we show that

Wn

(n
k
F (xak)

)
=Wn

(
x−1/γ

)
+ oP (ϱ (x)) ,

uniformly on w ≥ 1. Let us fix d > 0 and set ϱn (x) :=
∣∣∣n
k
F (xak)− x−1/γ

∣∣∣ to write

P

(
sup
w≥1

x1/(2γ)−ϵ
∣∣∣Wn

(n
k
F (xak)

)
−Wn

(
x−1/γ

)∣∣∣ > d

)

= P

(
sup
w≥1

x1/(2γ)−ϵ |Wn (ϱn (x))| > d

)
= P

(
|Wn (1)| sup

w≥1
x1/(2γ)−ϵ (ϱn (x))

1/2 > d

)
,

which, by Markov’s inequality, is less than or equal to d−2 supw≥1 x
1/(2γ)−ϵ (ϱn (x))

1/2 . Since ϱn (x) =

o
(
x−1/γ+ϵ

)
, uniformly on w ≥ 1, then the latter probability equals o (1) as sought. Hence, we showed that

∫ x−1/γ2

0

Wn (hn (s)) ds =

∫ x−1/γ2

0

Wn

(
sγ2/γ

)
ds+ oP (ϱ (x)) ,

thus
√
kTn5 = x−1/γ2Wn

(
x−1/γ

)
−
∫ x−1/γ2

0

Wn

(
sγ2/γ

)
ds+ oP (ϱ (x)) .

By using a change of variables, the latter equation becomes

√
kTn5 = x1/γ−1/βWn

(
x−1/γ

)
+ (1− γ/β)

∫ x−1/γ

0

tγ/β−2Wn (t) dt+ oP (ϱ (x)) . (5.13)

It follows that, from (5.11) , (5.12) and (5.13) , that (5.6) is indeed true.
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5.1.7 Asymptotic behavior of B̃(2)
n (x)

It is easy to verify that

B̃(2)
n (x) =

(
H (xak)

H (ak)
− x−1/β

)(∫ ∞

ak

G (w)

G (ak)
d
F (w)

F (ak)

)
.

By using inequality (5.10) (applied to H), that for possibly different functions ÃH , with ÃH (t) ∼ AH (t) ,
as t→ ∞, and for each 0 < ϵ < 1, there exists t0 = t0 (ϵ) , such that for all t ≥ t0 and x ≥ 1, we have

∣∣∣∣∣
H (tx) /H (t)− x−1/β

ÃH (t)
− x−1/β

xρH/β − 1

ρHβ

∣∣∣∣∣ ≤ ϵx−1/β+ϵ.

Thus by letting t = ak, we write

H (xak)

H (ak)
− x−1/β = x−1/β

(
xρH/β − 1

ρHβ
+ o (xϵ)

)
ÃH (ak) .

uniformly on x ≥ 1. Since ÃH (ak) ∼ AH (n/k) then

H (xak)

H (ak)
− x−1/β = x−1/β

(
xρH/β − 1

ρHβ
+ o (xϵ)

)√
kAH (n/k) .

On the other hand, we have ∫ ∞

ak

G (w)

G (ak)
d
F (w)

F (ak)
→ β

γ
,

it follows that B̃(2)
n (x) = x−1/β

(
xρH/β − 1

ρHγ
+ o (xϵ)

)
AH (n/k) , uniformly on x ≥ 1.

5.1.8 Summarize
Up to now we showed that

√
k
(
∆(2)

n (x)− (β/γ)x−1/β
)
= Θn (x) +

√
kB̃(2)

n (x) + oP (ϱ (x)) ,

where

Θn (x) := x1/γ−1/βWn

(
x−1/γ

)
− β

γ
x−1/βWn (1) +

(
1− γ

β

)∫ x−1/γ

0

tγ/β−2Wn (t) dt,

uniformly on x ≥ 1. Recall that ϱ (x) = x−η/β and note that Θn (x) = OP (ϱ (x)) and B̃(2)
n (x) = oP (ϱ (x)) ,

because AH (n/k) = o (1) , it follows that

∆(2)
n (x)− (β/γ)x−1/β = oP (ϱ (x)) .

Let 0 < ν < η < 1/2 be sufficiently small, then

xν/β
(
∆(2)

n (x)− (β/γ)x−1/β
)
= oP

(
x(ν−η)/β+ϵ

)

uniformly on x ≥ 1. It follows that

sup
x≥1

xν/β
∣∣∣∆(2)

n (x)− (β/γ)x−1/β
∣∣∣ P→ 0

and ∆
(2)
n (1)

P→ β/γ, thus by (5.1) we get supx≥1 xν/β
∣∣∣D(2)

n (x)
∣∣∣ P→ 0, as well, which gives (2.3) (for i = 2).

Observe now that √
k
(
∆(2)

n (1)− (β/γ)
)
= Θn (1) + oP (1) ,

it follows form (5.1) , that
√
k∆(2)

n (1)D(2)
n (x) = Θn (x)− x−1/βΘn (1) +

√
kB̃(2)

n (x) + oP (ϱ (x)) .

It is ready to check that Θn (x) − x−1/βΘn (1) ≡ L(2)
n (x) , thus the weak approximation (2.4) (for i = 2)

comes. This completes the proof of the theorem.
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5.2 Proof of Theorem 2.2
Recall that

γ̂ − γ =

∫ ∞

1

x−1D(1)
n (x) dx and β̂ − β =

∫ ∞

1

x−1D(2)
n (x) dx.

By applying respectively the two first results in Theorem 2.1, we easily show that γ̂ P→ γ and β̂
P→ β, that

we omits further details. To establish the asymptotic normality, let us first write

γ̂1 − γ1 =
2β2

(γ̂ − 2β) (γ − 2β)
(γ̂ − γ)− γ̂2(

γ̂ − 2β̂
)
(γ̂ − 2β)

(
β̂ − β

)
. (5.14)

By making use of, respectively, two Gaussian approximations in Theorem 2.1 yields
√
k (γ̂ − γ) =

∫ ∞

1

x−1L(1)
n (x) dx+

∫ ∞

1

x−1
√
kB(1)

n (x) dx+ oP (1)

and √
k
(
β̂ − β

)
=

∫ ∞

1

x−1L(2)
n (x) dx+

∫ ∞

1

x−1
√
kB(2)

n (x) dx+ oP (1) .

By using an integration by parts with a change of variables, we end up with

√
k (γ̂ − γ) = γ

∫ 1

0

s−1Wn (s) ds− γWn (1) +

√
kAF (n/k)

1− ρF
+ oP (1) ,

and
√
k
(
β̂ − β

)
= (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds+

√
kAH (n/k)

1− ρH
+ oP (1) .

The previous two representations mean that
√
k (γ̂ − γ) and

√
k
(
β̂ − β

)
are asymptotically Gaussian rv’s,

which imply that √
k (γ̂ − γ) = OP (1) =

√
k
(
β̂ − β

)
.

Then in view of (5.14) together with the consistency of γ̂ and β̂, we get

√
k (γ̂1 − γ1) =

2β2

(γ − 2β)2

√
k (γ̂ − γ)− γ2

(γ − 2β)2

√
k
(
β̂ − β

)
+ oP (1) .

By assumptions, we have
√
kAF (n/k) → λF and

√
kAH (n/k) → λH , it follows that

√
k (γ̂1 − γ1) = Zn1 + Zn2 + µ+ oP (1) ,

where
(γ − 2β)2

2β2
Zn1 := γ

∫ 1

0

s−1Wn (s) ds− γWn (1)

and

−(γ − 2β)2

γ2
Zn2 : = (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds,

with µ is as in (2.5) . Note that both Zn1 and Zn2 are centred Gaussian rv’s, then it remains to compute the
second order moment of Zn1 + Zn2. To this end, let us define the following quantities

∆1 (ρ) :=

∫ 1

0

sρ−2Wn (s) ds, ∆2 (ρ) :=

∫ 1

0

sρ−2Wn (s) (log s) ds, ∆3 :=Wn (1) .
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Thereby, we write
(γ − 2β)2

2β2
Zn1 := γ∆1 (1)− γ∆3

and

−(γ − 2β)2

γ2
Zn2 := (2γ − β)

γ

β
∆1 (γ/β)− γ∆3 +

(
γ

β
− 1

)
γ2

β
∆2 (γ/β) .

By using elementary computations, we end up with the following expectations:

E
[
∆2

1 (ρ)
]
=

2

ρ (2ρ− 1)
, E

[
∆2

2 (ρ)
]
=

2 (4ρ− 1)

ρ2 (2ρ− 1)3
, E

[
∆2

3

]
= 1,

E [∆1 (ρ)∆2 (ρ)] =
1− 4ρ

ρ2 (2ρ− 1)2
, E [∆1 (ρ)∆3] =

1

ρ
, E [∆2 (ρ)∆3] = − 1

ρ2
.

This gives

E [Zn1]
2 =

4β4γ2

(γ − 2β)4
, E [Zn2]

2 =
βγ6

(
β2 − 2βγ + 2γ2

)

(2γ − β)3 (γ − 2β)4

and
E [Zn1Zn2] = − 2β4γ2

(γ − 2β)4
,

therefore

E [γ̂1 − γ1]
2 = E [Zn1]

2 +E [Zn2]
2 + 2E [Zn1Zn2] + o (1)

=
γ6β

(
β2 − 2βγ + 2γ2

)

(2γ − β)3 (γ − 2β)4
+ o (1) ,

which completes the proof of the lemma.

6 APPENDIX B
Proposition 6.1. Assume that F ∈ RV(−1/γ1) and G ∈ RV(−1/γ2). Then, for every r, s ≥ 0, we have

E
[(
G (X)

)r
(log(X/t))s | X > t

]

E
[(
G (X)

)r | X > t
] →

(
γ1γ

(1 + r) γ1 − rγ

)s

Γ (s+ 1) , as t→ ∞.

Proof. Observe that
E
[(
G (X)

)r
(log(X/t))s | X > t

]

E
[(
G (X)

)r | X > t
] =

It (s)
It (0)

,

where

It (s) :=
∫ ∞

t

(
G (x)

G (t)

)r

(log(x/t))s
dF (x)

F (t)
.

Let us decompose It (s) into the sum of

It,1 := −
∫ ∞

1

{(
G (tx)

G (t)

)r

− x−r/γ2
}
(log x)s d

F (tx)

F (t)
,

It,2 := −
∫ ∞

1

x−r/γ2 (log x)s d
{
F (tx)

F (t)
− x−1/γ

}

and It,3 := −
∫∞
1 x−r/γ2 (log x)s dx−1/γ . Next we show that both It,1 and It,2 tend to zero as t→ ∞. Indeed,

let us write

|It,1| ≤
∫ ∞

1

∣∣∣∣
(
G (tx)

G (t)

)r

− x−r/γ2
∣∣∣∣ (log x)

s d
F (tx)

F (t)
.
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Since G ∈ RV(−1/γ2) then G ∈ RV(−r/γ2) therefore by applying Proposition 5.1 yields
(
G (tx)

G (t)

)r

− x−r/γ2 = o
(
x−r/γ2+ϵ

)
= o (1) , as t→ ∞,

for every small ϵ > 0 and uniformly on x ≥ 1. It follows that

It,1 = o (1)

∫ ∞

1

(log x)s d
F (tx)

F (t)
.

By using an integration by parts, we show that
∫ ∞

1

(log x)s d
F (tx)

F (t)
=

∫ ∞

1

F (tx)

F (t)
d (log x)s .

Once again, from Proposition 5.1, F (tx) /F (t) = (1 + o (xϵ))x−1/γ , then the previous integral becomes
∫ ∞

1

(1 + o (xϵ))x−1/γd (log x)s .

It is clear that ∫ ∞

1

x−1/γd (log x)s = s

∫ ∞

1

(log x)s−1 x−1/γ−1dx

= γss

∫ ∞

0

vs−1e−vdv = γssΓ (s) ,

which, from the gamma function properties, is finite for any s ≥ 0. This implies that
∫ ∞

1

(1 + o (xϵ))x−1/γd (log x)s <∞,

for any s ≥ 0 and small ϵ > 0, and therefore It,1 = o (1) . For the term It,2 we use once gain an integration
by parts with similar arguments to get It,2 = o (1) as well. By using elementary analysis with a change of
variables, we show that

It,3 =
Γ (s+ 1)

γ (r/γ2 + 1/γ)s+1 ,

thereby
It (s)
It (0)

=
Γ (s+ 1)

(r/γ2 + 1/γ)s
+ o (1) , as t→ ∞.

Finally, by replacing 1/γ2 by 1/γ − 1/γ1, we complete the proof of Proposition 6.1.

Proposition 6.2. Let Rn (s) := n−1
∑n

i=1 I (ξi ≤ s) , be the uniform empirical df pertaining to a sequence of iid
rv’s ξi, i = 1, ..., n uniformly distributed on (0, 1) . Then, for n ≥ 1, we have

sup
ξ1:n≤t≤1

t

Rn (t)
= OP (1) = sup

ξ1:n≤t≤1

Rn (t)

t
,

where ξ1:n := min1≤i≤n (ξi) .

Proof. The proofs of the first two assertions may be found in [17] (pages 415 and 416, inequality 2).

Proposition 6.3. Let k = kn be an integer sequence satisfying k → ∞ and k/n→ 0, then

(i)
√
k

(
1−

(
nUk:n

k

)α)
=Wn (1) + oP (1) .

If the second-order condition (2.1) (for F ) holds, then

(ii)
√
k

((
Xn−k:n
ak

)α

− 1

)
= αγWn (1) + oP (1) ,
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and

(iii)
√
k

(
1− F (xXn−k:n)

F (xak)

)
=Wn (1) + oP (1) ,

uniformly on x ≥ 1, for every real α.

Proof. Let us start by to prove assertion (i) for α = 1. Observe that
√
k (1− nUk:n/k) =

√
k
(n
k
Un (nUk:n/k)− nUk:n/k

)
,

and from weak approximation (5.7) , there exists a sequence of standard Wiener processes Wn (s) , such
that √

k
(n
k
Un (nUk:n/k)− nUk:n/k

)
=Wn (nUk:n/k) + oP (1) .

Next we show that Wn (nUk:n/k) =Wn (1) + oP (1) . To this end, let us

ϵn := |nUk:n/k − 1|
which tends to zero in probability. It is clear that for any fixed d > 0, we have

P (|Wn (nUk:n/k)−Wn (1)| > d)

= P (|Wn (ϵn)| > d) ≤ P

(
sup

0≤s≤ϵn
|Wn (s)| > d

)
.

For sufficiently small ϵ > 0, the latter probability is less than or equal to

P

(∣∣∣∣ sup
0≤s≤ϵ

|Wn (s)|
∣∣∣∣ > d

)
+ ϵ ≤ P

(
|Wn (1)| > ϵ−1/2d

)
+ ϵ,

which by using Markov’s inequality is
(
d−2 + 1

)
ϵ. This means that Wn (nUk:n/k) = Wn (1) + oP (1) . To

show assertion (i) for every real α, it suffices to use the mean value theorem and the fact that nUk:n/k =
1 + oP (1) . For assertions (ii) and(iii) , let us write

√
k

(
1− F (xXn−k:n)

F (xak)

)

=
√
k

(
nUk:n

k
− F (xXn−k:n)

F (xak)

)
+

√
k

(
1− nUk:n

k

)

and
√
k

((
Xn−k:n
ak

)α

− 1

)

=
√
k

((
Xn−k:n
ak

)α

−
(
nUk:n

k

)−αγ)
+
√
k

((
nUk:n

k

)−αγ
− 1

)
.

By using similar arguments with the second order condition of F , we show that both first terms of right-
hand of the previous equations tend to zero in probability. To achieve the proof it suffices to apply assertion
(i) , as sought.

Proposition 6.4. Assume F ∈ 2RV(−1/γ) (AF , ρF ) and G ∈ 2RV(−1/γ2) (AG, ρG). Then, for all large x, there
exist constants c1, c2 > 0, such that

F (x) = (1 + o (1)) c1x
−1/γ and G (x) = (1 + o (1)) c2x

−1/γ2 .

Proof. See the proof of Lemma 7.1 in [3].
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Erratum: Moderate Deviations Principle and
Central Limit Theorem for Stochastic

Cahn-Hilliard Equation in Hölder Norm.

Ratsarasaina R. M.1 and Rabeherimanana T.J.2

ABSTRACT: We consider a stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise. In this paper, we

prove a Central Limit Theorem (CLT) and a Moderate Deviation Principle (MDP) for a perturbed stochastic Cahn-Hilliard equation in

Hölder norm. The techniques are based on Freidlin-Wentzell’s Large Deviations Principle. The exponential estimates in the space of

Hölder continuous functions and the Garsia-Rodemich-Rumsey’s lemma plays an important role, an another approach than the Li.R.

and Wang.X. Finally, we estabish the CLT and MDP for stochastic Cahn-Hilliard equation with uniformly Lipschitzian coefficients.

Keywords: Large Deviations Principle, Moderate Deviations Principle, Central Limit Theorem, Hölder space, Stochastic Cahn-Hilliard

equation, Green’s function, Freidlin-Wentzell’s method.

✦

MSC: 60H15, 60F05, 35B40, 35Q62

1 INTRODUCTION AND PRELIMINARIES.
The Cahn-Hilliard equation was developed in 1958 to model the phase separation process of a binary
mixture (Cahn J.W. and Hilliard J.E. [3,4]). This approach has been extended to many other branches of
science as dissimilar as polymer systems, population growth, image processing, spinodal decomposition,
among others.

Consider the process {Xε(t, x)}ε>0 solution of stochastic Cahn-Hilliard with multipicative space time
white noise, indexed by ε > 0, given by




∂tX
ε(t, x) = −∆(∆Xε(t, x)− f(Xε(t, x))) +

√
εσ(Xε(t, x))Ẇ (t, x),

in (t, x) ∈ [0, T ]×D,

Xε(0, x) = X0(x), (1.1)

∂Xε(t,x)
∂µ = ∂∆Xε(t,x)

∂µ = 0, on (t, x) ∈ [0, T ]× ∂D.

where T > 0, D = [0, π]3, ∆Xε(t, x) denotes the Laplacian of Xε(t, x) in the x-variable, µ is the outward
normal vector, f is a polynomial of degree 3 with positive dominant coefficient such as f = F

′
where
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F (u) = (1 − u2)2, W is a space-time of a Brownian sheet defined on some filtered probability space
(Ω,F , (Ft)t≥0,P) and Ẇ = ∂2W

∂t∂x is the formal derivative of a Brownian sheet W defined on probability
space (Ω,F ,P). The coefficients f , σ are uniform Lipschitz with respect to x, with at most linear growth.
More precisely, we suppose that there exists two constants Kf and Kσ such that ∀x, y ∈ R,





|f(x)− f(y)| ≤ Kf |x− y|
(1.2)

|σ(x)− σ(y)| ≤ Kσ|x− y|
and that there exists a constant K > 0 such that :

sup{|f(x)|+|σ(x)|} ≤ K(1+|x|). (1.3)

Let X0 be the solution of the determinic Cahn-Hilliard equation

∂tX
0(t, x) = −∆(∆X0(t, x)− f(X0(t, x)))

with initial condition X0(0, x) = X0(x). We expect that ||Xε −X0||α → 0 in probability as ε → 0+ where
||.||α is the Hölder norm (see (2.1)). The LDP, CLT and MDP for stochastic Cahn-Hilliard equation are not
new. For example, Boulanba.L. and Mellouk.M. [2] studied the LDP for the mild solution of Stochastic
Cahn-Hilliard equation (1.1). Li.R. and Wang.X. [8] studied the CLT and MDP for stochastic perturbed
Cahn-Hilliard equation using the weak convergence approach.

However, we study its CLT and MDP for stochastic Cahn-Hilliard equation in the context of Hölder
norm using another method. It means, we study the process

ηε(t, x) =

(
Xε −X0

√
ε

)
(t, x) (1.4)

and

θε(t, x) =

(
Xε −X0

√
εh(ε)

)
(t, x) (1.5)

in order to get a CLT and a MDP respectively.
The techniques are based on the exponential estimates in the space of Hölder continuous functions. The
Garsia-Rodemich-Rumsey’s lemma plays a very important role.
The paper is organized as follows : in the section one, we prove that ηε(t, x) defined by (1.4) converges in
probability to η0(t, x). More precisely we purpose to prove that limε→0 E||ηε− η0||rα = 0. In the section two,
we study the LDP for (1.4) as ε → 0 for 1 < h(ε) < 1√

ε
, that is to say , the process θε(t, x) defined by (1.5)

obeys a LDP on Cα([0, 1] ×D) with speed h2(ε) and with rate function Ĩ(.) defined later. In section three,
we prove the main results. Finally the example for CLT and MDP for stochastic Cahn-Hilliard equation
with uniformly Lipschitzian coefficients be given in section four.

2 MAIN RESULTS

Let H denote the Cameron-Martin space associated with the Brownian sheet
{
W (t, x), t ∈ [0, T ], x ∈ D

}
,

that is to say,

H =

{
h(t) =

∫ t

0

∫

D

|ḣ(t, x)|2dtdx : ḣ ∈ L2
(
[0, T ]×D

)}
.

Let E0, E be polish space such that the initial condition X0(x) takes valued in a compact subspace of E0
and Θε =

{
Gε : E0 × C

(
[0, T ]×D,R

)
→ E , ε > 0

}
a family of measurable maps valued in E .

For X0 ∈ E0, define Xε,X0 = Gε
(
X0,

√
εW
)

and for n0 ∈ N, consider the following Sn0 = {Ψ ∈ L2([0, T ] ×
D) :

∫ T
0

∫
D Ψ2(s, y)dsdy ≤ n0} which is a compact metric space, equipped with the weak topology on

L2([0, T ]×D).
We denote ||.||α the α-hölder norm such that

||F ||α = ||F ||∞+|F |α (2.1)
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where

||F ||∞ = sup
{∣∣F (s, x)

∣∣ : (s, x) ∈ [0, T ]×D
}
,

|F |α = sup

{ |F (s1, x1)− F (s2, x2)|
(|s1 − s2|+ |x1 − x2|2)α

: (s1, x1), (s2, x2) ∈ [0, T ]×D

}
.

Let Cα([0, T ]×D) the space of function F : [0, T ]×D −→ R such that ||F ||α < +∞ .
Schilder’s theorem for the Brownian sheet asserts that the family{√

εW (t, x) : ε > 0
}

satisfies a LDP on Cα([0, T ]×D), with the good rate function I(.) defined by

I(h) =

{
1
2

∫ T
0

∫
D |ḣ(t, x)|2dtdx for h ∈ H

+∞ otherwise,

For h ∈ H, let Xh
X0

be the solution of the following deterministic partial differential equation

∂tX
h
X0

(t, x) = −∆(∆Xh
X0

(t, x)− f(Xh
X0

(t, x))) + σ(Xh
X0

(t, x))ḣ(t, x)

with initial condition
Xh

X0
(0, x) = X0(x).

Theorem 1([2]): Let σ be continuous on R, f and σ satisfy conditions (1.2) and (1.3). Then, the law of Xε
X0

satisfies the LDP on Cα([0, T ]×D) with a good rate fuction ĨX0(.) defined by

ĨX0(Φ) = inf{
ḣ∈L2([0,T ]×D) : Φ=G0(X0,I(h))

}
{
1

2

∫ T

0

∫

D

ḣ2(s, y)dsdy

}

and +∞ otherwise.
See also for example [1,7].
In addition to (1.2) and (1.3), the coefficient f is differentiable with respect to x and the derivative f

′
is

also uniformly Lipschitz. More precisely, there exists a constante C such that

|f ′
(x)−f ′

(y)| ≤ C|x−y| (2.2)

for all x, y ∈ R.
Combined with the uniform Lipschitz continuity of f , we have

|f ′
(x)| ≤ Kf . (2.3)

2.1 Central Limit Theorem
In this section, our first main result is the following theorem :

Theorem 2: Suppose that f , f ′ and σ satisfy conditions (1.2), (1.3), (2.2) and (2.3). Then for any α ∈ [0; 14),
r ≥ 1, the process ηε(t, x) defined by (1.4) converges in Lr to the random process η0(t, x) as ε → 0 where η0(t, x)
verifies the stochastic partial differential equation

∂tη
0(t, x) = −∆(∆η0(t, x)− f

′
(X0(t, x))η0(t, x)) + σ(X0(t, x))Ẇ (t, x)

with initial condition η0(0, x) = 0.

Let S(t) = e−A
2t be the semi-group generated by the operator A2u :=

∑∞
i=0 e

−µ2
i tuiwi where u :=∑∞

i=0 uiwi. Then the convolution semi-group (see Cardon-Weber.C [5]) is defined by S(t)U(x) =∑∞
i=0 e

−µ2
i twi(x)wi(y) for any U(x) in L2(D), with the associated Green’s function Gt such that Gt(x, y) =∑∞

i=0 e
−µ2

i twi(x)wi(y). Lemma 1: There exists positive constants C, γ and γ′ satisfying γ < 4 − d, γ ≤ 2 and
γ

′
< 1− d

4 such that for all y, z ∈ D, 0 ≤ s < t ≤ T and 0 ≤ h ≤ t, we have :

1.
∫ t
0

∫
D |Gr(x, y)−Gr(x, z)|2dxdr ≤ C|y − z|γ ,

2.
∫ t
0

∫
D |Gr+h(x, y)−Gr(x, y)|2dxdr ≤ C|h|γ

′
,
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3.
∫ t
0

∫
D |Gr(x, y)|2dxdr ≤ C|t− s|γ ,

4. supt∈[0,T ]

∫ t
0

∫
D |Gt−u(x, z)−Gt−u(y, z)|pdudz ≤ C|x− y|3−p , p ∈]32 , 3[,

5. supx∈D
∫ s
0

∫
D |Gt−u(x, z)−Gs−u(x, z)|pdudz ≤ C|t− s| (3−p)

2 , p ∈]1, 3[,
6. supx∈D

∫ s
t

∫
D |Gu(x, z)|pdudz ≤ C|t− s| (3−p)

2 , p ∈]1, 3[.

2.2 Moderate Deviations Principle
In this paper, our second main result is the MDP for the Stochastic Cahn-Hilliard equation. More precisely,
we assume that the process {θε(t, x)}ε>0 defined by (1.5) obeys a LDP on the space Cα([0, 1] × D), with
speed h2(ε) and rate function ĨX0(.).

Proposition 1: If f and σ are Lipschitzian, then there exists C(p,K,Kf ,
T,X0) depending on p, K, Kf , T , X0 such that

E
(
||Xε −X0||∞

)p ≤ ε
p
2C(p,K,Kf , T,X0) −→ 0 as ε→ 0.

Theorem 3: Let σ be continuous on R and f , f ′ , σ satisfy the conditions (1.2), (1.3), (2.2) and (2.3).Then,
the process {θε(t, x)}ε>0 defined by (1.5) obeys a LDP on the space Cα([0, 1] × D), with speed h2(ε) and rate
function ĨX0(.) such that:

ĨX0(ϕ) = inf
{ḣ∈L2([0,T ]×D) : ϕ=G0(X0,I(h))}

{
1

2

∫ T

0

∫

D

ḣ2(s, y)dyds

}

and +∞ otherwise.

3 PROOF OF MAIN RESULTS

Proof of proposition 1: In Boulanba and Mellouk [2], we know that the stochastic Cahn-Hilliard equation
has a solution {Xε(t, x)}ε>0 such that

Xε(t, x) =

∫

D

Gt(x, y)X0(y)dy +

∫ t

0

∫

D

∆Gt−s(x, y)f(Xε(s, y))dsdy

+
√
ε

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy).

and that ||Xε −X0||α → 0 in probability as ε→ 0+ where X0 is the solution of

X0(t, x) =

∫

D

Gt(x, y)X0(y)dy +

∫ t

0

∫

D

∆Gt−s(x, y)f(X0(s, y))dsdy.

Then we have
(
Xε −X0

)
(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)
[
f(Xε(s, y))− f(X0(s, y))

]
dsdy

+
√
ε

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy).

Using the inequality (a+ b)p ≤ 2p−1(ap + bp), we have

(
||Xε −X0||∞

)p ≤ 2p−1
([

sup
0≤s≤T

x∈D

∣∣∣∣
∫ t

0

∫

D

∆Gt−s(x, y)[f(Xε(s, y))

− f(X0(s, y))]dsdy

∣∣∣∣
]p

+ ε
p
2

[
sup

0≤s≤T

x∈D

∣∣∣∣
∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy)

∣∣∣∣
]p)

.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 51

Denote

αε
1(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)[f(Xε(s, y))− f(X0(s, y))]dsdy,

αε
2(t, x) =

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy).

From (1.2), (1.3) and Hölder inequality, for p > 2,

E
(
||αε

1||T∞
)p ≤ Kp

f

(
sup

0≤s≤T

x∈D

∣∣∣∣
∫ t

0

∫

D

∆Gq
t (x, y)dsdy

∣∣∣∣
) p

q

E
∫ T

0

|Xε
X0

−X0
X0

|pdt

where 1
p + 1

q = 1.

For any p > 2 and q
′ ∈ (1, 32) such that γ := (3 − 2q

′
)p/(4q

′
) − 2 > 0, and for any x, y ∈ D , t ∈ [0, T ] , by

Burkholder’s inequality for stochastic integrals against Brownian sheets (see Walsh.J.B. [9], page 315) and
Hölder’s inequality, we have

E
(
|αε

2(t, x)− αε
2(t, y)|p

)

≤ cpE
(∫ t

0

∫

D

|Gt−u(x, z)−Gt−u(y, z)|2σ2(Xε
X0

(u, z)
)
dudz

) p
2

≤ cpK
p

(∫ t

0

∫

D

|Gt−u(x, z)−Gt−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ t

0

∫

D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

≤ C(p,K,X0)|x− y|
(3−2q

′
)p

2q
′

, (3.1)

where (1.3) and 4 in Lemma 1 were used, 1
p′

+ 1
q′

= 1 and C(p,K,X0) is independent of ε.
Similary, from 4, 5 and 6 in Lemma 1, for 0 ≤ s ≤ t ≤ T ,

E
(
|αε

2(t, y)− αε
2(s, y)|p

)

≤ cpE
(∫ s

0

∫

D

|Gt−u(y, z)−Gs−u(y, z)|2σ2(Xε
X0

(u, z))dudz

) p
2

+cpE
(∫ t

s

∫

D

|Gt−u(y, z)|2σ2(Xε
X0

(u, z))dudz

) p
2

≤ cpK
p

(∫ s

0

∫

D

|Gt−u(y, z)−Gs−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ s

0

∫

D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

+cpK
p

(∫ t

s

∫

D

|Gt−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ t

s

∫

D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

≤ C(p,K,X0)|t− s|
(3−2q

′
)p

4q
′

(3.2)

Putting together (3.1) and (3.2), by Garsia-Rodemich-Rumsey (see Wang.R. and Zang.T. [10] or Corollary
1.2 in Walsh.J.B. [9]), there exist a random variable Kp,ε(ω) and a constant c such that
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E
(
|αε

2(t, y)− αε
2(s, y)|p

)

≤ Kp,ε(ω)
p(|t− s|+ |x− y|)γ

(
log

c

|t− s|+ |x− y|

)2

(3.3)

and
sup
ε

E[Kp
p,ε] < +∞.

choosing s = 0 in (3.3), we obtain

E
(
sup

0≤s≤T

x∈D

∣∣
∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy)
∣∣)p ≤ C(p,K,X0) sup

ε
E[Kp

p,ε]

< +∞. (3.4)

Putting (3.1), (3.2) and (3.3) together and using 6 in Lemma 1, there exists a constant C(p,K,Kf , X0) such
that

E(||Xε
t −X0

t ||T∞)p ≤ C(p,K,Kf , X0)

(
E
∫ t

0

(||Xε
s −X0

s ||∞)pds+ ε
p
2

)

By Gronwall’s inequality, we have

E(||Xε
t −X0

t ||∞)p ≤ ε
p
2C(p,K,Kf , X0)e

C(p,K,Kf ,X0)T .

Putting ε→ 0, the proof is complete. □
Proof of Theorem 2 : The following Lemma is a consequence of Garsia-Rodemich-Rumsey’s theorem.
Lemma 2: Let Ṽ ε(t, x) = {V ε(t, x) : (t, x) ∈ [0, T ] ×D} be a family of real-valued stochastic processes and let
p ∈ (0,∞). Suppose that Ṽ ε(t, x) satisfies the following assumptions :

A-1°) For any (t, x) ∈ [0, T ]×D,
lim
ε→0

E|V ε(t, x)|p = 0

A-2°) There exists γ > 0 such that for any (t, x), (s, y) ∈ [0, T ]×D

E|V ε(t, x)− V ε(s, y)|p ≤ C(|t− s|+ |x− y|2)2+γ ,

where C is a constant independent of ε.
In this case, for any α ∈ (0, γk ), p ∈ [1, k),

lim
ε→0

E||V ε||pα = 0.

In this section, we prove that
lim
ε→0

E||Xε
t −X0

t ||rα = 0.

Consider the process ηε(t, x) defined by (1.4) and

Xε(t, x) =

∫

D

Gt(x, y)X0(y)dy +

∫ t

0

∫

D

∆Gt−s(x, y)f(Xε(s, y))dsdy

+
√
ε

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy).

We know that ||Xε −X0||α → 0 in probability as ε→ 0+ where X0 is the solution of

X0(t, x) =

∫

D

Gt(x, y)X0(y)dy +

∫ t

0

∫

D

∆Gt−s(x, y)f(X0(s, y))dsdy.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 53

In this case, we have

ηε(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)
(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

)
dsdy

+

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy)

then

ηε(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)f
′
(Xε(s, y))ηε(s, y)dsdy

+

∫ t

0

∫

D

Gt−s(x, y)σ(Xε(s, y))W (ds, dy).

For ε→ 0, we have

η0(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)f
′
(X0(s, y))η0(s, y)dsdy

+

∫ t

0

∫

D

Gt−s(x, y)σ(X0(s, y))W (ds, dy).

To this end, we verify (A-1), (A-2); for V ε = ηε − η0, write

V ε(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)
(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

− f
′
(X0(s, y))η0(s, y)

)
dsdy

+

∫ t

0

∫

D

Gt−s(x, y)
(
σ(Xε(s, y))− σ(X0(s, y))

)
W (ds, dy).

Let

kε1(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)
(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

−f ′
(X0(s, y))ηε(s, y)

)
dsdy,

kε2(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)f
′
(X0(s, y))

(
ηε(s, y)− η0(s, y)

)
dsdy,

kε3(t, x) =

∫ t

0

∫

D

Gt−s(x, y)
(
σ(Xε(s, y))− σ(X0(s, y))

)
W (ds, dy).

Now we shall divide the proof into the following two steps.
Step 1. Following the same calculation as the proof of (3.4) in proposition 1, we deduce that for p > 2,
0 ≤ t ≤ 1

E
(∣∣|kε3

∣∣|t∞
)

≤ C(p,Kσ, T )

∫ t

0

E
(
||Xε −X0||s∞

)p
ds

≤ ε
p
2C(p,K,Kσ, T,X0).

By Taylor’s formula, there exists a random field βε(t, x) taking values in (0, 1) such that,

f(Xε(s, y))− f(X0(s, y)
)

= f
′(
X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))

)

×(Xε(s, y)−X0(s, y))

Since f
′

is also Lipschitz continuous, we have
∣∣f ′(

X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))
)
− f

′(
X0(s, y)

)∣∣
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≤ Cβε(t, x)
∣∣Xε(t, x)−X0(t, x)

∣∣.
then

∣∣f ′(
X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))

)
− f

′(
X0(s, y)

)∣∣

≤ C
∣∣Xε(t, x)−X0(t, x)

∣∣.
Hence

∣∣kε1(t, x)
∣∣ ≤ C

∫ t

0

∫

D

∆Gt−s(x, y)
∣∣(Xε(t, x)−X0(t, x)

)
ηε(s, y)

∣∣dsdy

=
√
εC

∫ t

0

∫

D

∆Gt−s(x, y)
(
ηε(s, y)

)2
dsdy. (3.5)

By Hölder’s inequality, for p > 2

E
(∣∣kε1

∣∣t
∞
)p

≤ ε
p
2Cp

(
sup

0≤s≤T ,x∈D

∣∣∣∣
∫ t

0

∫

D

∆Gq
s(x, y)dsdy

∣∣∣∣
) p

q

×
∫ t

0

E
(
||ηε||s∞

)2p
ds

where 1
p + 1

q = 1.

Using (2.2) and applying proposition 1, there exists a constant C(p,K,Kf , C,Kσ, T,X0) depending on p,
K, Kf , C, Kσ, T , X0 such that

E
(∣∣kε1(t, x)

∣∣)p ≤ ε
1
2C(p,K,Kf , C,Kσ, T,X0) (3.6)

Noticing that |f ′ | ≤ Kf , by Hölder inequality, we deduce that for p > 2

E
(∣∣kε2(t, x)

∣∣)p

≤ Kp
f

(
sup

0≤s≤T

x∈D

∣∣
∫ t

0

∫

D

∆Gq
s(x, y)dsdy

∣∣) p
q

∫ t

0

E
(
||ηε − η0||s∞

)p
ds (3.7)

where 1
p + 1

q = 1.
Putting (3.5), (3.6) and (3.7) together, we have

E
(
||ηε − η0||s∞

)p ≤ C(p,K,Kf , C,Kσ, T,X0)

(
ε

1
2 +

∫ t

0

E
(
||ηε − η0||s∞

)p
ds

)

By Gronwall’s inequality, we obtain

E
(
||ηε − η0||s∞

)p ≤ ε
1
2C(p,K,Kb, C,Kσ, T,X0) −→ 0 for ε→ 0.
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Step 2. We show that all the terms kεi , i = 1, 2, 3 satisfy the condition (A-2) in Lemma 2. For any p > 2 and
q
′ ∈ (1, 32) such that γ := (3 − 2q

′
)p/(4q

′
) − 2 > 0, for all x, y ∈ D, 0 ≤ t ≤ T , by Burkholder’s inequality

and Hölder’s inequality, we have

E
∣∣kε3(t, x)− kε3(t, y)

∣∣p ≤ CpE
(∫ t

0

∫

D

|Gt−u(x, z)−Gt−u(y, z)|2

×(σ(Xε(u, z))− σ(X0(u, z)))2dudz

) p
2

≤ Cp

(∫ t

0

∫

D

(|Gt−u(x, z)−Gt−u(y, z)|)2q
′
dudz

) p

2q
′

×Kp
σE
(∫ t

0

∫

D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

≤ C(p, q
′
,Kσ,K, T )|x− y|

(3−2q
′
)p

2q
′

(3.8)

where (1.3), 4 in Lemma 1 and Proposition 1 were used, 1
p′

+ 1
q′

= 1.
Similarly, in view of 5 , 6 in Lemma 1; it follows that for 0 ≤ s ≤ t ≤ T , we have

E
∣∣kε3(t, y)− kε3(s, y)

∣∣p

≤ CpE
( ∫ s

0

∫

D

|Gt−u(y, z)−Gs−u(y, z)|2
(
σ(Xε(u, z))− σ(X0(u, z))

)2
dudz

) p
2

+ CpE
( ∫ t

s

∫

D

|Gt−u(y, z)|2
(
σ(Xε(u, z))− σ(X0(u, z))

)2
dudz

) p
2

≤ Cp

(∫ t

0

∫

D

|Gt−u(y, z)−Gs−u(y, z)|2q
′
dudz

) p

2q
′

×Kp
σE
(∫ t

0

∫

D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

+ Cp

( ∫ t

s

∫

D

|Gt−u(y, z)|2q
′
dudz

) p

2q
′

×Kp
σE
(∫ t

0

∫

D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

≤ C(p, q
′
,Kσ,K, T )|t− s|

(3−2q
′
)p

4q
′

(3.9)

where Proposition 1 were used, 1
p′

+ 1
q′

= 1, C(p, q
′
,Kσ,K, T ) is independent of ε.

Putting together (3.8) and (3.9), we have

E
∣∣kε3(t, x)−kε3(s, y)

∣∣p ≤ C(p, q
′
,Kσ,K, T )

(
|t−s|+|x−y|2

)γ
(3.10)

Consequently, from 4, 6 in Lemma 1, proposition 1 and the result of step 1, we also have :

E
∣∣kεi (t, x)− kεi (s, y)

∣∣p ≤ C
(
|t− s|+ |x− y|2

)γ
, i = 2, 3. (3.11)

Putting together (3.10) and (3.11), we obtain that there exists a constant C independent of ε satisfying that

E
∣∣(ηε(t, x)− η0(t, x))− (ηε(s, y)− η0(s, y))|p ≤ C

(
|t− s|+ |x− y|2

)γ

For any α ∈ (0, 14), r ≥ 1, choosing p > 2, and q
′ ∈ (1, 14) such that α ∈ (0, γp ) and r ∈ [1, p), Lemma 2 we

have
lim
ε→0

E||ηε − η||rα = 0.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 56

The proof is complete . □

Proof of Theorem 3 : Recall the following lemma from Chenal.F and Millet.A [6].

Lemma 3: Let F : ([0, T ]×D)2 −→ R, α0 > 0 and CF > 0 be such that for any (t, x), (s, y) ∈ [0, T ]×D, set
∫ T

0

∫

D

|F (t, x, u, z)− F (s, y, u, z)|2dudz ≤ C(|t− s|+ |x− y|2)α0 . (3.12)

Let N : [0, T ] ×D −→ R be an almost surely continuous, Ft−adapted such that sup{|N(t, x)| : (t, x) ∈ [0, T ] ×
D} ≤ ρ,a.s., and for (t, x) ∈ [0, T ]×D, set

F(t, x) =

∫ T

0

∫

D

F (t, x, u, z)N(u, z)W (dudz)

Then for all α ∈]0, α0
2 [, there exists a constant C(α, α0) such that for all M ≥ ρCFC(α, α0)

P(||F||α ≥M) ≤ (
√
2T 2 + 1) exp

(
− M2

ρ2CFC2(α, α0)

)

Proof of Theorem 3 : Now, we prove the MDP, that is to say, the process θε defined by (1.5) obeys a
LDP on Cα([0, T ] × D), with the speed function h2(ε) and the rate function Ĩ(.). More precisely, to prove
the LDP of ηε

h(ε) , it is enough to show that ηε

h(ε) is h2(ε)-exponentially equivalent to η0

h(ε) ,that is to say, for
any δ > 0, we have

lim sup
ε→0

h−2(ε) log P
( ||ηε − η0||α

h(ε)
> δ

)
= −∞. (3.13)

Since
||ηε − η0||α ≤ (1 + (1 + T )α)|ηε − η0|Tα

to prove (3.13), it is enough to prove that

lim sup
ε→0

h−2(ε) log P
( |ηε − η0|Tα

h(ε)
> δ

)
= −∞ , ∀δ > 0.

Recall the decomposition in Proof of Theorem 2,

ηε(t, x)− η0(t, x) = kε1(t, x) + kε2(t, x) + kε3(t, x).

For any q in (32 , 3),
1
p +

1
q = 1, and x, y ∈ D, 0 ≤ s ≤ t ≤ T , by Hölder’s inequality, 4 in Lemma 1 and (2.3),

we have

∣∣kε2(t, x)− kε2(t, y)
∣∣p ≤ Kf

(∫ t

0

∫

D

|∆Gt−u(x, z)−∆Gt−u(y, z)|qdudz
) 1

q

×
(∫ t

0

∫

D

|ηε(u, z)− η0(u, z)|pdudz
) 1

p

≤ Kf |x− y|
3−q
q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

(3.14)
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Similarly, in view of 5 and 6 in Lemma 1, it follows that for 0 ≤ s ≤ t ≤ T ,

∣∣kε2(t, y)− kε2(s, y)
∣∣p ≤ Kf

(∫ s

0

∫

D

|∆Gt−u(y, z)−∆Gs−u(y, z)|qdudz
) 1

q

×
(∫ s

0

∫

D

|ηε(u, z)− η0(u, z)|p
) 1

p

+

(∫ t

s

∫

D

|∆Gt−u(y, z)|qdudz
) 1

q

×
(∫ t

0

∫

D

|ηε(u, z)− η0(u, z)|p
) 1

p

≤ 2Kf |t− s|
3−q
2q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

(3.15)

Putting together (3.14), (3.15), we have

∣∣kε2(t, y)− kε2(s, y)
∣∣p ≤ C(Kf )(|t− s|+ |x− y|2)

3−q
2q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

.

Choosing q ∈ (32 , 3), such that α = (3− q)/2q and noticing that
||ηε − η0||u∞ ≤ (1 + u)α|ηε − η|uα, we obtain that

|kε2|tα ≤ C(Kf )

(∫ t

0

((1 + u)α|ηε − η0|uα)pdu
) 1

p

Thus, for t ∈ [0, 1], we have

(|ηεt − η0t |tα)p ≤ C(p, T,Kf )

[(
|kε1(t)|tα + |kε3(t)|tα

)p
+

∫ t

0

(|ηε − η0|sα)pds
]

Applying Gronwall’s Lemma, we have

(|ηεt − η0t |tα)p ≤ C(p, T,Kf )

[(
|kε1(t)|tα + |kε3(t)|tα

)p
]
eC(p,T,Kf )T (3.16)

By (3.15) and (3.16), its sufficient to prove that for any δ > 0

lim sup
ε→0

h−2(ε)logP
( |kεi (t)|Tα

h(ε)
> δ

)
= −∞ i = 1, 3.

Step 1. For any ε > 0, η > 0 we have

P
(
|kε3|Tα > h(ε)δ

)
≤ P

(
|kε3|Tα > h(ε)δ, |Xε −X0|T∞ < η

)

+ P(|Xε −X0|T∞ ≥ η) (3.17)

By 4 and 6 in Lemma 1, Gt−u(x, z)1[u≤t] satisfies (3.12)(see Lemma 3) for α0 =
1
2 .

Applying Lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C,M = h(ε)δ, ρ = ηKσ,

Ỹ (t, x) =
(
σ(Xε

X0
(t, x))− σ(X0

X0
(t, x))

)
1||Xε−X0||T∞>η

, we obtain that for all ε sufficiently small such that h(ε)δ ≥ ρCC(α, 12),

P
(
|kε3(t)|Tα > h(ε)δ, ||Xε −X0||T∞ < η

)

≤ (
√
2T 2+1) exp

(
− h2(ε)δ2

η2K2
σCC

2(α, 12)

)
. (3.18)
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Since Xε
X0

satisfies the LDP on Cα([0, T ]×D), see Theorem 1

lim sup
ε→0

ε logP(||Xε −X0||T∞ ≥ η) ≤ lim sup
ε→0

ε logP(||Xε −X0||α ≥ η)

≤ − inf{IX0(f) : ||f −X0||α ≥ η}
In this case, the good rate function I = {IX0(f) : ||f −X0||α ≥ η} has compact level sets, the ”inf{IX0(f) :
||f −X0||α ≥ η}” is obtained at some function f0. Because IX0(f) = 0 if and only if f = X0

X0
, we conclude

that
− inf{IX0(f) : ||f −X0||α ≥ η} < 0.

For h(ε) → ∞ ,
√
εh(ε) → 0, we have

lim sup
ε→0

h−2(ε)logP
(
||Xε −X0||T∞ ≥ η

)
= −∞. (3.19)

Since η > 0 is arbitrary, putting together (3.17), (3.18) and (3.19), we obtain

lim sup
ε→0

h−2(ε)logP
( ||kε3||α
h(ε)

≥ δ

)
= −∞. (3.20)

Step 2. For the first term kε1(t), let

kε1(t, x) =

∫ t

0

∫

D

∆Gt−s(x, y)Bε(s, y)dsdy,

where

Bε(s, y) =

(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

− f
′
(X0(s, y))ηε(s, y)

)
,

as stated in the proof of Theorem 2, we have

||Bε||T∞ ≤ C
(||Xε

X0
−X0

X0
||T∞)2√

ε
.

However, by Hölder’s continuity of Green function G, it is easy to prove that, for any α ∈ (0, 14)

|kε2|Tα ≤ C(α, T )||Bε||T∞.
From the proof of proposition 1, we obtain that

||Xε
X0

−X0
X0

||T∞ ≤ C(Kb, T )||k̃ε2||T∞
where

k̃ε2(t, x) =

(
ε

∫ t

0

∫

D

∆Gt−s(x, y)σ(Xε
X0

(s, y))W (dsdy)

) 1
2

.

Applying lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C, ρ =

√
εK(1 + ||XT

X0
||T∞ + η)

Z̃(t, x) =
√
εσ(Xε

X0
(t, x))1[||Xε

X0
||T∞<||X0

X0
||T∞+η],

for any η > 0, we obtain that for all ε is sufficiently small such that
M ≥ √

εK(1 + ||XT
X0

||T∞ + η)CC(α, 12),

P(||k̃ε2||T∞ ≥M, ||Xε
X0

||T∞ < ||X0
X0

||T∞ + η)

≤ (
√
2T 2 + 1) exp

(
− M2

εK2CC2(α, 12)(1 + ||X0
X0

||T∞ + η)2

)
.
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For the same reason as (3.20), we obtain

lim supε→0 h
−2(ε) logP(||Xε

X0
||T∞ ≥ ||X0

X0
||T∞ + η)

≤ lim sup
ε→0

h−2(ε) logP(||Xε
X0

−X0
X0

||T∞ ≥ η)

= −∞.

For any η > 0, by Bernstein’s inequality and the continuity of σ, we have

lim sup
ε→0

h−2(ε) logP
( |kε1(t)|Tα

h(ε)
≥ δ

)

≤ lim sup
ε→0

h−2(ε) logP
((

||k̃ε2||T∞
)2

≥
√
εh(ε)δ

C(α, T,Kf , C)

)

≤ lim sup
ε→0

h−2(ε) log
[
P
((

||k̃ε2(t)||T∞
)2 ≥

√
εh(ε)δ

C(α, T,Kf , C)
,

||Xε
X0

|| < ||X0
X0

||T∞ + η

)
+ P(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

]

≤
(
lim sup

ε→0

−δ√
εh(ε)C(α, T,Kf , C)K2CC2(α, 12)(1 + ||XX0 ||T∞ + η)2

)

∨
(
lim sup

ε→0
h−2(ε) logP(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

)
= −∞. □

4 A FEW EXAMPLES

4.1 Example one. Central limit theorem for stochastic Cahn-Hilliard equation with uniformly Lips-
chitzian coefficients
Let O be an open connected set in R3 such that O = [0, π]3 and Cα([0, 1] ×O) denotes the set of α-Hölder
continuous fonctions. Let {uε(t, x)}ε>0 be the solution of stochastic Cahn-Hilliard equation indexed by
ε > 0, given by




∂tu
ε(t, x) = −∆

(
∆uε(t, x)− 4(uε(t, x))3 + 4uε(t, x)

)
+
√
ε(1− uε(t, x))Ẇ ,

∂uε(t,x)
∂ν = ∂∆uε(t,x)

∂ν = 0, on (t, x) ∈ [0, T ]× ∂O (4.1)

uε(0, x) = u0(x)

where the coefficients f and σ are bounded, uniformly Lipschitz and verify the condition (1.2) and (1.3)
such that Kf = 16 and Kσ = 1. Consider the process βε(t, x) such that

βε(t, x) =

(
uε − u0√

ε

)
(t, x). (4.2)

In this section, we establish the CLT for the stochastic Cahn-Hilliard equation with uniformly Lipschitzian
coefficients in Hölder norm ||.||α such that for all u : [0, 1]×O −→ R,

||u||α = sup
(s,x)∈[0,T ]×O

|u(s, x)|+ sup
(s1,x1)∈[0,T ]×O
(s2,x2)∈[0,T ]×O

|u(s1, x1)− u(s2, x2)|
(|s1 − s2|+ |x1 − x2|2)α

.

Now, we obtain the main results similary to Theorem 2.

Theorem 5: For any α ∈ [0, 14), r ≥ 1, the process βε(t, x) defined by (4.2) converges in Lr to the random
process β0(t, x) as ε→ 0 where β0(t, x) verifies the stochastic partial differential equation

∂tβ
0(t, x) = −∆(∆β0(t, x)− 4

(
3(u0(t, x))2 − 1)β0(t, x)

)
+ (1− u0(t, x))Ẇ (t, x)
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with initial condition η0(0, x) = 0.
Proof of Theorem 5 : Consider the process βε(t, x) defined by (4.2) depending on uε(t, x) and u0(t, x)
such that

βε(t, x)

= 4

∫ t

0

∫

O
∆t−sG(x, y)

(
(uε(s, y))3 − uε(s, y)− ((u0(s, y))3 − u0(s, y))√

ε

)
dsdy

+

∫ t

0

∫

O

( ∞∑

i=0

e−µ
2
i (t−s)wi(x)wi(y)

)
(1− uε(s, y))W (ds, dy).

Using the equality ∀a, b ̸= 0,a
3−b3
a−b = a2 + ab+ b2, we obtain

βε(t, x) = 4

∫ t

0

∫

O
∆t−sG(x, y)

[
(uε(s, y))2 + uε(s, y).u0(s, y)

+ (u0(s, y))2 − 1
]
βε(s, y)dsdy

+

∫ t

0

∫

O

( ∞∑

i=0

e−µ
2
i (t−s)wi(x)wi(y)

)
(1− uε(s, y))W (ds, dy)

For ε→ 0, we obtain

β0(t, x) = 4

∫ t

0

∫

O
∆t−sG(x, y)

(
3(u0(s, y))2 − 1

)
β0(s, y)dsdy

+

∫ t

0

∫

O

( ∞∑

i=0

e−µ
2
i (t−s)wi(x)wi(y)

)
(1− u0(s, y))W (ds, dy).

Denote the process Rε = βε − β0 such that

Rε = mε
1(t, x) +mε

2(t, x) +mε
3(t, x)

where

mε
1(t, x) = 4

∫ t

0

∫

O
∆Gt−s(x, y)

[(
(uε(s, y))3 − (u0(s, y))3√

ε

)

−
(
uε(s, y)− u0(s, y)√

ε

)
−
(
3(u0(s, y))2 − 1

)
βε(s, y)

]
dsdy,

mε
2(t, x) = 4

∫ t

0

∫

O
∆Gt−s(x, y)

(
3(u0(s, y))2 − 1

)(
βε(s, y)− β0(s, y)

)
dsdy,

mε
3(t, x) =

∫ t

0

∫

O

( ∞∑

i=0

e−µ
2
i (t−s)wi(x)wi(y)

)
(u0(s, y)− uε(s, y))W (ds, dy).

Step 1. For p > 2 and t ∈ [0, 1], we obtain

E
(∣∣|mε

3(t, x)
∣∣|t∞
)

≤ C(p, T )

∫ t

0

E
(
||uε − u0||s∞

)p
ds

≤ √
εC(p, T, u0).

By Taylor’s formula, there exists a random field γε(t, x) taking values in [0, 1] such that

f(uε(s, y))− f(u0(s, y))

= f
′(
u0(s, y) + βε(t, x)(uε(s, y)− u0(s, y))

)
(uε(s, y)− u0(s, y))



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 61

For the first term mε
1(t, x), we have

∣∣mε
1(t, x)

∣∣ ≤ 4
√
εC

∫ t

0

∫

O
∆Gt−s(x, y)

(
βε(s, y)

)2
dsdy. (4.3)

By Hölder’s inequality, for p > 2

E
(∣∣mε

1(t, x)
∣∣t
∞
)p

≤ (
√
ε)pCp

(
sup

0≤s≤T , x∈O

∣∣∣∣
∫ t

0

∫

O
∆Gq

s(x, y)dsdy

∣∣∣∣
) p

q

×
∫ t

0

E
(
||βε||s∞

)2p
ds

where 1
p +

1
q = 1. Using (1.5) and applying proposition 1, there exists a constant ℵp,K,C depending on p, K,

C such that

E|mε
1(t, x)

∣∣p ≤ √
ε.ℵp,K,C . (4.4)

Since |f ′ | ≤ 16,by Hölder inequality , we deduce that for p > 2

E|mε
2(t, x)|p ≤ 24p

(
sup

0≤s≤T ,x∈

∣∣∣∣
∫ t

0

∫

O
∆Gq

s(x, y)dsdy

∣∣∣∣
) p

q

×
∫ t

0

E
(
||βε − β0||s∞

)p
ds (4.5)

where 1
p + 1

q = 1.

Putting (4.3),(4.4) and (4.5) together, we have

E
(
||βε − β0||s∞

)p ≤ ℵp,K,C

(√
ε+

∫ t

0

E
(
||βε − β0||s∞

)p
ds
)
.

By Gronwall’s inequality, we obtain

E
(
||βε − β0||s∞

)p ≤ √
εℵp,K,C → 0 for ε→ 0.

Step 2. We prove that the terms kεi , i = 1, 2, 3 satisfy the condition (A-2) in Lemma 2.
For any p > 2 and q

′ ∈ (1, 32)such that γ := (3 − 2q
′
)p/(4q

′
) − 2 > 0, for all x, y ∈ O , 0 ≤ t ≤ T ,by

Burkholder’s inequality and Hölder’s inequality, we have

E
∣∣mε

3(t, x)−mε
3(t, y)

∣∣p ≤ C(p, q
′
,K, T )|x− y|

(3−2q
′
)p

2q
′

(4.6)

where (1.3), 4 in Lemma 1 and Proposition 1 were used, 1
p′

+ 1
q′

= 1 .
Similarly, in view of 5, 6 in Lemma 1; its follows that for 0 ≤ s ≤ t ≤ T , we have

E
∣∣mε

3(t, y)−mε
3(s, y)

∣∣p ≤ C(p, q
′
,K, T )|t− s|

(3−2q
′
)p

4q
′

(4.7)

where Proposition 1 were used, 1
p′

+ 1
q′

= 1, C(p, q
′
,K, T ) is independent of ε .

Putting together (4.6) and (4.7), we have

E
∣∣mε

3(t, x)−mε
3(s, y)

∣∣p ≤ C(p, q
′
,Kσ,K, T )

(
|t−s|+|x−y|2

)γ
. (4.8)

Consequently, from 4, 6 in Lemma 1, proposition 1 and the result of step 1, we also have :

E
∣∣mε

i (t, x)−mε
i (s, y)

∣∣p ≤ C
(
|t− s|+ |x− y|2

)γ
, i = 2, 3. (4.9)

Putting together (4.8) and (4.9), we obtain that there exists a constant C independent of ε satisfying that

E
∣∣(βε(t, x)− β0(t, x))− (βε(s, y)− β0(s, y))|p ≤ C

(
|t− s|+ |x− y|2

)γ
.

For any α ∈ (0, 14), r ≥ 1, choosing p > 2, and q
′ ∈ (1, 32) such that α ∈ (0, γp ) and r ∈ [1, p), Lemma 2 we

have
lim
ε→0

E||βε − β||rα = 0.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 62

4.2 Example two. Moderate Deviations Principle for stochastic Cahn-Hilliard equation with uni-
formly Lipschitzian coefficient
In this section we establish the MDP for the stochastic Cahn-Hilliard equation (4.1). Consider the process
Θε(t, x) such that

Θε(t, x) :=

(
uε − u0√
εa(ε)

)
(t, x). (4.10)

In this section, we study the LDP for Θε(t, x) defined by (4.10) as ε→ 0 with 1 < a(ε) < 1√
ε
.

Theorem 6: The process {Θε(t, x)}ε>0 defined by (4.10) obeys a LDP on the space Cα([0, 1] × O), with speed
a2(ε) and rate function JM.D.P (.) such that :

JM.D.P (g) = inf
g=G0(u0,I(h))

{
1

2

∫ T

0

∫ π

0

∫ π

0

∫ π

0

ḣ2(t, x)dtdx1dx2dx3

}

and +∞ otherwise.
Proof of Theorem 6: It is sufficient to prove that

lim sup
ε→0

a−2(ε) log P
( |βε − β0|α

a(ε)
> δ

)
= −∞ , ∀δ > 0.

Recall the decomposition in the proof of Theorem 5

βε(t, x)− β0(t, x) = mε
1(t, x) +mε

2(t, x) +mε
2(t, x).

For any q in (32 , 3),
1
p + 1

q = 1, and x, y ∈ O, 0 ≤ s ≤ t ≤ T , by Hölder’s inequality, 4 in Lemma 1 and (2.3),
we have

∣∣mε
2(t, x)−mε

2(t, y)
∣∣p ≤ 16|x− y|

3−q
q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

. (4.11)

Similarly, in view of 5 and 6, it follows that for 0 ≤ s ≤ t ≤ T ,

∣∣mε
2(t, y)−mε

2(s, y)
∣∣p ≤ 32|t− s|

3−q
2q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

. (4.12)

Putting together (4.11), (4.12), we have

∣∣mε
2(t, y)−mε

2(s, y)
∣∣p ≤ C(Kf )(|t− s|+ |x− y|2)

3−q
2q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

.

Choosing q ∈ (32 , 3), such that α = 3− q/2q and noticing that ||βε − β0||u∞ ≤ (1 + u)α|βε − β0|uα, we obtain
that

|mε
2|tα ≤ C(Kf )

(∫ t

0

((1 + u)α|βε − β0|uα)pdu
) 1

p

.

Thus, for t ∈ [0, 1], we have

(|βεt − β0t |tα)p ≤ C(p, T,Kf )

[(
|mε

1(t)|tα + |mε
3(t)|tα

)p
+

∫ t

0

(|βε − β0|sα)pds
]
.

Applying Gronwall’s Lemma to Ψ(t) = (|βεt − β0t |tα)p, we have

(|βεt − β0t |tα)p ≤ C(p, T,Kf )

[(
|mε

1(t)|tα + |mε
3(t)|tα

)p
]
eC(p,T,Kf )T . (4.13)

By (4.12) and (4.13), it is sufficient to prove that for any δ > 0,

lim sup
ε→0

h−2(ε)logP
( |mε

i (t)|Tα
a(ε)

> δ

)
= −∞ i = 1, 3.
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Step 1. For any ε > 0, η > 0 we have

P
(
|mε

3(t)|Tα > a(ε)δ
)

≤ P
(
|mε

3(t)|Tα > a(ε)δ, |uε − u0|T∞ < η
)

+ P(|uε − u0|T∞ ≥ η) (4.14)

By 4 and 6 in Lemma 1,
(∑∞

i=0 e
−µ2

i (t−s)wi(x)wi(y)
)
.1[u≤t] satisfies (3.12)(see Lemma 3 ) for α0 =

1
2 .

Applying Lemma 3, we have

F (t, x, u, z) =
( ∞∑

i=0

e−µ
2
i (t−s)wi(x)wi(z)

)
1[u≤t], α0 =

1

2
, CF = C,M = a(ε)δ,

ρ = ηKσ, Y
∗(t, x) =

(
u0(t, x)− uε(t, x)

)
1||uε−u0||T∞>η

we obtain that for all ε sufficiently small such that a(ε)δ ≥ ρCC(α, 12)

P
(
|mε

3(t)|Tα > a(ε)δ, ||uε − u0||T∞ < η
)
≤ (

√
2T 2 + 1) exp

(
− a2(ε)δ2

η2K2
σCC

2(α, 12)

)
. (4.15)

Since uε satisfies the LDP on Cα([0, T ]×O)

lim sup
ε→0

ε logP(||uε − u0||T∞ ≥ η) ≤ lim sup
ε→0

ε logP(||uε − u0||α ≥ η)

≤ − inf{I(f) : ||f − u0||α ≥ η}.
In this case, the good rate function I = {I(f) : ||f − u0||α ≥ η} has compact level sets, the ”inf{I(f) :
||f − u0||α ≥ η}” is obtained at some function f0. Because I(f) = 0 if and only if f = u0, we conclude that

− inf{I(f) : ||f − u0||α ≥ η} < 0.

For a(ε) → ∞ ,
√
εa(ε) → 0, we have

lim sup
ε→0

a−2(ε)logP
(
||uε − u0||T∞ ≥ η

)
= −∞. (4.16)

Since η > 0 is arbitrary, putting together (4.14), (4.15) and (4.16), we obtain

lim sup
ε→0

a−2(ε)logP
( ||mε

3||α
a(ε)

≥ δ

)
= −∞. (4.17)

Step 2. For the first term mε
1(t), let

mε
1(t, x) =

∫ t

0

∫

O
∆Gt−s(x, y)Mε(s, y)dsdy,

where

Mε(s, y) = 4

((
(uε(s, y))3 − (u0(s, y))3√

ε

)
−
(
uε(s, y)− u0(s, y)√

ε

)

−
(
3(u0(s, y))2 − 1

)
βε(s, y)

)

as stated in the proof of Theorem 5, we have

||Mε||T∞ ≤ C
(||uε − u0||T∞)2√

ε
.

However, by the Hölder’s continuity of Green function G, it is easy to prove that, for any α ∈ (0, 14)

|mε
2|Tα ≤ C(α, T )||Mε||T∞.

From the proof of proposition 1, we obtain that

||uε − u0||T∞ ≤ C(T )||m̃ε
2||T∞.
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where

m̃ε
2(t, x) =

√
ε

∫ t

0

∫

O
∆Gt−s(x, y)uε(s, y)W (dsdy).

Applying lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C, ρ =

√
εK(1 + ||uT ||T∞ + η)

Z∗(t, x) =
√
ε(1− uε(t, x))1[||uε||T∞<||u0||T∞+η],

for any η > 0, we obtain that for all ε is sufficiently small such that M ≥ √
ε(1 + ||uT ||T∞ + η)CC(α, 12),

P(||m̃ε
2||T∞ ≥M, ||uε||T∞ < ||u0||T∞ + η)

≤ (
√
2T 2 + 1) exp

(
− M2

εK2CC2(α, 12)(1 + ||u0||T∞ + η)2

)
.

For the same raison as (4.11), we obtain

lim sup
ε→0

a−2(ε) logP(||uε||T∞ ≥ ||u0||T∞ + η)

≤ lim sup
ε→0

a−2(ε) logP(||uε − u0||T∞ ≥ η) = −∞.

For any η > 0, by Bernstein’s inequality and the continuity of σ, we have

lim sup
ε→0

a−2(ε) logP
( |mε

1(t)|Tα
a(ε)

≥ δ

)

≤ lim sup
ε→0

a−2(ε) logP
((

||m̃ε
2||T∞

)2

≥
√
εa(ε)δ

C(α, T,Kf , C)

)

≤ lim sup
ε→0

a−2(ε) log
[
P
((

||m̃ε
2(t)||T∞

)2 ≥
√
εa(ε)δ

C(α, T,Kf , C)
,

||uε|| < ||u0||T∞ + η

)
+ P(||uε|| ≥ ||u0||T∞ + η)

]

≤
(
lim sup

ε→0

−δ√
εa(ε)C(α, T,Kf , C)K2CC2(α, 12)(1 + ||u0||T∞ + η)2

)

∨
(
lim sup

ε→0
h−2(ε) logP(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

)
= −∞.

5 CONCLUSION

In this paper, we have proved a CLT and a MDP for a perturbed stochastic Cahn-Hilliard equation in
Hölder space by using the exponential estimates in the space of Hölder continuous functions and the
Garsia-Rodemich-Rumsey’s lemma. We can also examine the same situation in Besov-Orlicz space.
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I. INTRODUCTION  

Renewable energies are an alternative way to conventional fossil fuels, and they originate from natural phenomena caused by the 
sun and the earth. The six primary sources of renewable energy are solar, wind, hydro, geothermal, marine, and biomass. The potential 
of these sources depends on various factors like sunshine, wind exposure, topology, and land geometry [1]. To cover the load demand in 
arid zones, solar based devices are generally combined with storage elements to get Hybrid systems. The PV-battery hybrid system 
combines a photovoltaic (PV) panel with a battery storage element to increase the autonomy of the system,  

In the literature, there are different types of energy systems (isolated energy systems, connected energy systems, single-source 
energy systems, and multi-source energy systems). In general, the term Hybrid Energy System (HES) refers to electric power generation 
systems that use multiple types ofsources in order to combine the advantages of each while taking into account their respective 
specifications.  These hybrid sources combine very high specific energy and maximum power available for considerable durations. 
Today, the use of hybrid energy systems (HES) has advanced in several industrial sectors such as embedded systems (automobiles, 
airplanes, boats, etc.) as well as for powering isolated communities or even those connected to grids[11]. 

 
 
 
 
 

Abstract-With the increasing global energy consumption and the need for sustainable solutions, this article focuses on the 
energy management of a hybrid photovoltaic (PV)-battery system using the backstepping method. The research addresses the 
challenges of intermittent solar irradiation by implementing an incremental conductance maximum power point tracking 
(MPPT) algorithm for the PV panel and backstepping control for battery charging and discharging. The system's performance 
and control effectiveness were validated throughlaboratory experiments. The results demonstrate the system's robustness, 
stability, and ability to respond to fast changes, making it a promising solution for efficient energy management in hybrid PV-
battery systems. The findings provide valuable insights for future research and advancements in this field. 

Keywords: Energy management, Hybrid PV/battery system, Backstepping method, PV panels-Batteries-DC/DC boost converter, 
DC/DC bidirectional converter, Incremental conductance MPPT, Renewable energies, Energy storage-nonlinear control, 
experimental validation. 
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Effective management strategies require an understanding of the behavior of a system in response to input data, and this 
understanding is achieved through a prior numerical simulation, based on an explicit 
modeling the involved sources, which are the PV panel and the lead
representation of the static converters, of the types of DC
essential for comprehending and enhancing the system's overall performance to harness its full potential and ensure stability
world scenarios. 

 
In the framework of this study, a PV-battery hybrid system, which supplies a stationary load is presented 

effective control and power management of the system, each source is equipped with a side DC
of the PV panel is guaranteed via a quite adjusting of the related duty cycle. In the same point of view, the battery side converter 
Bidirectional DC-DC converter, which permits charging and discharging current of the battery.

A.PV Panel Model 
 

        Photovoltaic (PV) panels convert sunlight directly into electricity through the photovoltaic effect. 
PV models range varies from simple single
depends on the required accuracy and computational effort. The single
accuracy, is widely used in PV system design and simulation [
Photovoltaic panels are considered neither voltage nor current sources, but they can be estimated as voltage
generators, where the implicit four-parameter model (I
accuracy: 

𝐼௣௩ = 𝐼௖௖ − 𝐼௢ ቂ𝑒𝑥𝑝 ቀ
௏೛ೡାோೞ.ூ೛ೡ

௏೟೓
ቁ − 1ቃ(1)

This characteristic can be illustrated by the equivalent diagram (
mounted in parallel with a diode D characterizing the junction and a resistance Rs (series resistance) representing the losse
effects. 
The thermal voltage Vth and the diode saturation current Io are identified by:

𝐼௢ = (𝐼௖௖ − 𝐼௢௣). 𝑒𝑥𝑝[−
௏೚೛ିோೞ.ூ೚೛

௏೟೓
]     (2)

V୲୦ =
௏೚೛ାோೞ.ூ೚೛ି௏೚೎

୪୭୥ (ଵି
಺೚೛

಺೎೎
)

(3) 
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II. PV-BATTERY HYBRID SYSTEM 
 

Effective management strategies require an understanding of the behavior of a system in response to input data, and this 
rior numerical simulation, based on an explicit modeling of

modeling the involved sources, which are the PV panel and the lead-acid battery, and then  going 
erters, of the types of DC-DC boost and DC-DC buck-boost converters. The acquired models are 

essential for comprehending and enhancing the system's overall performance to harness its full potential and ensure stability

battery hybrid system, which supplies a stationary load is presented 
control and power management of the system, each source is equipped with a side DC-DC converter. An optimal operation 

V panel is guaranteed via a quite adjusting of the related duty cycle. In the same point of view, the battery side converter 
DC converter, which permits charging and discharging current of the battery. 

 
Figure 1.Synoptic scheme of the hybrid system 

III.  MODELINGOF SOURCES 

Photovoltaic (PV) panels convert sunlight directly into electricity through the photovoltaic effect. 
PV models range varies from simple single-diode models to complex multi-diode models. The se
depends on the required accuracy and computational effort. The single-diode model, due to its balance between complexity and 
accuracy, is widely used in PV system design and simulation [2]. 

neither voltage nor current sources, but they can be estimated as voltage
parameter model (Ipv, Rs, Vth, and Io) reflects the current-

ቃ(1) 

This characteristic can be illustrated by the equivalent diagram (Fig.2) [14-15]; consisting of a variable curr
mounted in parallel with a diode D characterizing the junction and a resistance Rs (series resistance) representing the losse

and the diode saturation current Io are identified by: 

(2) 

 
Figure 2. Equivalent diagram of the photovoltaic panel 

ping control           

Effective management strategies require an understanding of the behavior of a system in response to input data, and this 
modeling of the process, the first step is 

 in an analog way to a mathematical 
boost converters. The acquired models are 

essential for comprehending and enhancing the system's overall performance to harness its full potential and ensure stability in real-

battery hybrid system, which supplies a stationary load is presented in ’Fig .1'' To permit an 
DC converter. An optimal operation 

V panel is guaranteed via a quite adjusting of the related duty cycle. In the same point of view, the battery side converter is a 

Photovoltaic (PV) panels convert sunlight directly into electricity through the photovoltaic effect.  
diode models. The selection of an appropriate model 

diode model, due to its balance between complexity and 

neither voltage nor current sources, but they can be estimated as voltage-controlled current 
-voltage characteristic with notable 

15]; consisting of a variable current generator, 
mounted in parallel with a diode D characterizing the junction and a resistance Rs (series resistance) representing the losses by Joule 
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In the context of our study on 'Modelingof 
hybrid PV-battery systems. The average model simplifies analysis and facilitates control design, stability assessment, and energy 
management. The boost converter comprises a controlled switch, a flyback diode, and storage components (L, C), while Kirchhoff's 
laws aid in deriving average model equations for the buck
 

A. Modeling of PV Panel Boost Converter 

The average model for the PV panel boost converter is derived from the application of Kirchhoff's voltage and current laws (K
KCL) during the closed and open phases of the 
 

(4)

 
For this converter, the parameters are: 

 Capacitance (C) = 2200 µF 
 Inductance (L) = 15 mH 
 Resistance (r) = 2.8 Ω 

B. Modeling of Battery Buck-Boost Converter (Bidirectional Converter) 

Similarly, the average model for the battery buck
the closed and open phases of the transistors, resulting in the following average mod
 

L௕௔௧
ௗ௜್ೌ೟

ௗ௧
= 𝑉௕௔௧ − (1 − α௕௔௧)𝑉ௗ௖                                    

 
For this converter, the parameters are: 

 Capacitance (C) = 2200 µF 
 Inductance (L) = 12.21 mH 
 Resistance (r) = 2.6 Ω 

 
The model expressed in Equation (5) defines the battery's behavior during charging (i
Tr1 and Tr2 being complementary tuned, as presented in Equation (
 
𝛼்௥ଵ + 𝛼்௥ଶ = 1(6)                                                    
 
 

V. CONTROL

 

A. MPPT (Maximum Power Point Tracking) Algorithm
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IV. MODELING OF STATIC CONVERTERS 

 Static Converters,' we employ DC-DC boost converters and buck
battery systems. The average model simplifies analysis and facilitates control design, stability assessment, and energy 

t converter comprises a controlled switch, a flyback diode, and storage components (L, C), while Kirchhoff's 
laws aid in deriving average model equations for the buck-boost converter, enabling comprehensive system 

 
Figure 3. Descriptive diagram of the boost converter 

Modeling of PV Panel Boost Converter  

The average model for the PV panel boost converter is derived from the application of Kirchhoff's voltage and current laws (K
KCL) during the closed and open phases of the transistors [13]. This yields the following average model weighted bythe duty cycle α:

) 

Boost Converter (Bidirectional Converter)  

 
 

Figure 4. Converter associated with batteries. 

Similarly, the average model for the battery buck-boost converter is obtained by applying Kirchhoff's voltage and current laws during 
the closed and open phases of the transistors, resulting in the following average model:  

                                    (5) 

defines the battery's behavior during charging (ibat< 0) and discharging (i
Tr1 and Tr2 being complementary tuned, as presented in Equation (6): 

)                                                                                            

ONTROL STRATEGIES FOR THE PV-BATTERY HYBRID SYSTEM

. MPPT (Maximum Power Point Tracking) Algorithm 

ping control           

DC boost converters and buck-boost converters in 
battery systems. The average model simplifies analysis and facilitates control design, stability assessment, and energy 

t converter comprises a controlled switch, a flyback diode, and storage components (L, C), while Kirchhoff's 
boost converter, enabling comprehensive system testing [13]. 

The average model for the PV panel boost converter is derived from the application of Kirchhoff's voltage and current laws (KVL and 
model weighted bythe duty cycle α: 

boost converter is obtained by applying Kirchhoff's voltage and current laws during 

< 0) and discharging (ibat> 0), with switches 

YSTEM 



PV-Battery hybrid system power management based on backstep
Maximum Power Point Tracking (MPPT) is a critical technology in photovoltaic (PV) systems. Its main purpose is 

power output by continuously tracking the Maximum Power Point (MPP), which varies with external factors like temperature and 
solar irradiation intensity. MPPT adjusts to these changing conditions, ensuring PV cells operate as close as possible 
This dynamic regulation maximizes power extraction, enhancing overall PV system efficiency. One widely used MPPT method is 
Incremental Conductance (IncCond) 

 

B. The Incremental Conductance Method 

The IncCond method, an advanced MPPT technique
MPP. By iteratively modifying the converter's duty cycle and adjusting the voltage, this method seeks the point where the 
derivative of power over voltage approaches zero, indicatin

Figure 

The algorithm hinges on the condition that the derivative of power (Ppv) with respect to voltage (Vpv) is zero at the maximum
power point (MPP) and changes sign on either side of the MPP, represented by Equation (
 

ௗ௉೛ೡ

ௗ௏೛ೡ
= 0                                                    (7) 

At the MPP, this equation can be explicitly expressed as a function of both PV voltage and current, as given by Equation (

𝑉௣௩
ௗூ೛ೡ

ௗ௏೛ೡ
+  𝐼௣௩ = 0(8) 

The algorithm iteratively adjusts the converter's duty cycle, ensuring that dIpv/dVpv matches the absolute value of the 
instantaneous conductance Ipv/Vpv. This Incremental Conductance (IncCond) method excels in accuracy, rapid MPP det
and steady-state oscillation elimination, enhancing energy efficiency.
IncCond is a practical choice for energy management in hybrid PV
requirements and constraints. In this work, IncCond is utiliz
accompanying figure. 

Figure 6.
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A. In case of battery discharging: 

The average model of the boost DC-DC converter is given as follows:
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Maximum Power Point Tracking (MPPT) is a critical technology in photovoltaic (PV) systems. Its main purpose is 
power output by continuously tracking the Maximum Power Point (MPP), which varies with external factors like temperature and 
solar irradiation intensity. MPPT adjusts to these changing conditions, ensuring PV cells operate as close as possible 
This dynamic regulation maximizes power extraction, enhancing overall PV system efficiency. One widely used MPPT method is 

IncCond method, an advanced MPPT technique, computes the derivative of power with respect to voltage to pinpoint the 
MPP. By iteratively modifying the converter's duty cycle and adjusting the voltage, this method seeks the point where the 
derivative of power over voltage approaches zero, indicating the MPP. In ''Fig 5'', the flowchart of this technique is presented.

Figure 5. Flowchart of the IncCond MPPT Algorithm [12] 

The algorithm hinges on the condition that the derivative of power (Ppv) with respect to voltage (Vpv) is zero at the maximum
wer point (MPP) and changes sign on either side of the MPP, represented by Equation (7). 

 

At the MPP, this equation can be explicitly expressed as a function of both PV voltage and current, as given by Equation (

The algorithm iteratively adjusts the converter's duty cycle, ensuring that dIpv/dVpv matches the absolute value of the 
instantaneous conductance Ipv/Vpv. This Incremental Conductance (IncCond) method excels in accuracy, rapid MPP det

state oscillation elimination, enhancing energy efficiency. 
IncCond is a practical choice for energy management in hybrid PV-Battery systems, selected based on specific system 
requirements and constraints. In this work, IncCond is utilized for PV side boost converter control, as depicted in the 

 
6. Synoptic Scheme of the Control of the PV Boost Converter [5] 

THE APPLICATION OF THE BACKSTEPPING METHOD 

DC converter is given as follows: 

ping control           
Maximum Power Point Tracking (MPPT) is a critical technology in photovoltaic (PV) systems. Its main purpose is to optimize 

power output by continuously tracking the Maximum Power Point (MPP), which varies with external factors like temperature and 
solar irradiation intensity. MPPT adjusts to these changing conditions, ensuring PV cells operate as close as possible to their MPP. 
This dynamic regulation maximizes power extraction, enhancing overall PV system efficiency. One widely used MPPT method is 

, computes the derivative of power with respect to voltage to pinpoint the 
MPP. By iteratively modifying the converter's duty cycle and adjusting the voltage, this method seeks the point where the 

, the flowchart of this technique is presented. 

 

The algorithm hinges on the condition that the derivative of power (Ppv) with respect to voltage (Vpv) is zero at the maximum 

At the MPP, this equation can be explicitly expressed as a function of both PV voltage and current, as given by Equation (8). 

The algorithm iteratively adjusts the converter's duty cycle, ensuring that dIpv/dVpv matches the absolute value of the 
instantaneous conductance Ipv/Vpv. This Incremental Conductance (IncCond) method excels in accuracy, rapid MPP detection, 

Battery systems, selected based on specific system 
ed for PV side boost converter control, as depicted in the 
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𝑥ଶ̇
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௅
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௅

= (1 − 𝑢)
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஼
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ூ೛ೡೞ

஼
−  

௫మ

ோ஼

(9) 

Where the state vector is:𝑥 =  ൤
𝑖௕

𝑉ௗ௖
൨, and 𝑢 is the converter duty cycle. In this model, Ipvs expresses the PV current on the DC bus 

side and is considered as a disturbance input. E denotes the battery voltage V୆. 

1) Step One: 

We first calculate the inductor current tracking error Z1, given in (10). It is worth noting here that this choice is justified by the 
fact that the boost converter is an unstable non minimum phase system, and the deduction of the control law via the choice of the DC 
bus voltage tracking error as Z1 fails. To overcome this situation, by choosing Z1 as (10), the dc bus voltage can be indirectly 
controlled[6]. 

 

𝑍ଵ = 𝑥ଵ − 𝐼ௗ(10) 

        Where the reference battery current Iୢ,is deduced through the power flow in steady state, as follows: 

Iୢ =
(

౒ౚౙ
మ

౎
ି୚ౌ౒ .୍ౌ౒)

୉
(11) 

And its derivative is: 

𝑍ଵ̇ =  𝑥ଵ̇ −  𝐼ௗ̇  (12) 
 A first positive definite Lyapunov function is chosen as 

𝑉ଵ =  
ଵ

ଶ
𝑍ଵ

ଶ(13) 

By choosing the gradient of V1 as semi-definite function, one gets: 

𝑍ଵ =̇ − 𝑐ଵ𝑍ଵ(14) 
Where c1 is a manipulated positive constant. 

Plugging 𝑥ଵ̇ from equation (9) in equation (14): 

𝑍ଵ̇ = −
௥

௅
𝑥ଵ − (1 − 𝑢)

௫మ

௅
+

ா

௅
−  𝐼ௗ̇ = −𝑐ଵ𝑍ଵ(15) 

In this step, the stabilization part α1 can be deduced as: 

𝛼ଵ =  
௫మ

௅ 
=

ቂ௖భ௓భି
ೝ

ಽ
௫భା

ಶ

ಽ
ିூ೏̇ቃ

(ଵି௨)
(16) 

2) Step Two: 

        In an analog way, the second error Z2 is expressed as follows, which means that the DC bus voltage is regulated through the 
stabilization part α1: [8] 

𝑍ଶ =
௫మ

௅
− 𝛼ଵ    =>

௫మ

௅
= 𝑍ଶ + 𝛼ଵ(17) 

We replace 
௫మ

௅
in equation (15) with equation (17), one gets: 

𝑍ଵ̇ = −(1 − 𝑢)[𝑍ଶ + 𝛼ଵ] −
௥

௅
𝑥ଵ +

ா

௅
− 𝐼ௗ̇(18) 

Plugging α1 from equation (16) in equation (18) To finally get: 

𝑍ଵ̇ = −𝑐ଵ𝑍ଵ − (1 − 𝑢)𝑍ଶ(19) 

The derivative α1 can be explicitly given by: 

𝛼ଵ̇ =  
ቂ𝑐ଵ𝑍ଵ̇ − 

௥

௅
𝑥ଵ̇ +

ா̇

௅
− 𝐼ௗ̈ቃ (1 − 𝑢)

(1 − 𝑢)²
+  

�̇� ቂ𝑐ଵ𝑍ଵ −
௥

௅
𝑥ଵ +

ா

௅
− 𝐼ௗ̇ቃ

(1 − 𝑢)²
 

(20) 
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ିூ೏̈ା௨̇ఈభ

(ଵି௨)
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 We replace both 𝛼ଵ̇and 
௫మ̇

௅
  in the derivative of Z2 one obtains: 

𝑍ଶ̇ =  
௫మ̇

௅
− 𝛼ଵ̇(22) 

𝑍ଶ̇ = (1 − 𝑢)
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ೝಶ
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ಽ
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(ଵି௨)
൩(23) 

In this second step, a new positive definite Lyapunov function, extended to the second tracking error is proposed as: 

𝑉ଶ =
ଵ

ଶ
𝑍ଵ

ଶ +
ଵ

ଶ
𝑍ଶ

ଶ(24) 

=>Vଶ̇ = 𝑍ଵ𝑍ଵ̇ + 𝑍ଶ𝑍ଶ̇ = 𝑍ଵ[−𝐶ଵ𝑍ଵ − 𝑍ଶ(1 − 𝑢)] + 𝑍ଶ𝑍ଶ̇(25) 

       The convergence of both 𝑍ଵ, and 𝑍ଶ to zero, imposes that the gradient of Vଶ takes the following form: 

𝑉ଶ̇ = −𝑐ଵ𝑍ଵ
ଶ −̇ 𝑐ଶ𝑍ଶ

ଶ(26) 
According to this conclusion, the following equality is deduced: 

𝑍ଶ̇ − 𝑍ଵ(1 − 𝑢) + 𝐶ଶ𝑍ଶ = 0(27) 
Plugging 𝑍ଶ̇from equation (23) into equation (27): 
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൩ −  𝑍ଵ(1 − 𝑢) + 𝐶ଶ𝑍ଶ = 0(28) 

We extract �̇� from equation (28) to finally have the control law of our system: 

�̇� =
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(29)  

3) Zero Dynamics Study 
 

The zero dynamics study focuses on the deduction of the steady state duty cycle, when both the tracking errors 𝑍ଵand 𝑍ଶ, as well 
as the control input gradient �̇� tend to zero. A second order equation of the control law is obtained, having two possible roots, and as 
remarked, since the tolerable range of the duty cycle is between 0 and 1, only the following root u 2 is suitable[9]:  
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B. In case of battery charging:  

The average model of the boost DC-DC converter is given as follows: 
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Where the state vector is:  𝑥 =  ൤
𝑖௕

𝑉ௗ௖
൨, and 𝑢 is the converter duty cycle. In this model, Ipvs expresses the PV current on the DC 

bus side, and is considered as a disturbance input. E denotes the battery voltage V୆. 

1) Step One: 

Firstly, the inductor current tracking error Z1 is calculated, given in (32). It is worth noting here that this choice isfor the sake of 
continuity, because in the first scenario, Z1 was given as the equation (10), therefore, Z1 in this case is also given as (32). 

Zଵ = xଵ − Iୢ(32) 

And its derivative is presented in the following equation and is plugged by𝑥ଵ̇: 

Zଵ̇ =  xଵ̇ −  Iୢ̇ =
ି୰

୐
xଵ +

୳.୉

୐
−

୶మ

୐
− Iୢ̇(33) 

        Where the reference battery current Iୢ, is deduced through the power flow in steady state, as follows[7]: 
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(34) 

        A first positive definite Lyapunov function is chosen as follows: 

𝑉ଵ =  
ଵ

ଶ
𝑍ଵ

ଶ(35) 

         By choosing the gradient of V1 as semi-definite function, one gets: 

𝑍ଵ =̇ − 𝑐ଵ𝑍ଵ(36) 
 
Where c1 is a manipulated positive constant. 

Plugging 𝑍ଵ̇ from equation (32) in equation (36): 

𝑍ଵ̇ = −
௥

௅
𝑥ଵ −

௫మ

௅
+

௨.ா

௅
−  𝐼ௗ̇ = −𝑐ଵ𝑍ଵ   (37) 

In this step, the stabilization part α1 can be deduced as: 

𝛼ଵ =  
௫మ

௅ 
= 𝑐ଵ𝑍ଵ −

௥

௅
𝑥ଵ +

௨.ா

௅
− 𝐼ௗ̇   (38) 

2) Step Two: 

        In an analog way, the second error Z2 is expressed as follows, which means that the DC bus voltage is regulated through the 
stabilization part α1[10]: 

𝑍ଶ =
௫మ

௅
− 𝛼ଵ  =>

௫మ

௅
= 𝑍ଶ + 𝛼ଵ(39) 

We replace 
௫మ

௅
in equation (37) with equation (39), one gets: 

𝑍ଵ̇ = −
௥

௅
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௨.ா

௅
−  𝐼ௗ̇(40)  

Plugging α1 from equation (38) in equation (40) to finally get: 

𝑍ଵ̇ = −𝑐ଵ𝑍ଵ − 𝑍ଶ(41) 
The derivative α1 can be explicitly given by: 

𝛼ଵ̇ =  𝑐ଵ𝑍ଵ̇ −
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௅
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௅
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        We replace both 𝛼ଵ̇and 
௫మ̇

௅
  in the derivative of Z2, one obtains: 

𝑍ଶ̇ =  
௫మ̇

௅
− 𝛼ଵ̇(44) 
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In this second step, a new positive definite Lyapunov function, extended to the second tracking error is proposed as: 

𝑉ଶ =
ଵ

ଶ
𝑍ଵ

ଶ +
ଵ

ଶ
𝑍ଶ

ଶ(46) 

 => 

Vଶ̇ = 𝑍ଵ𝑍ଵ̇ + 𝑍ଶ𝑍ଶ̇ = 𝑍ଵ[−𝐶ଵ𝑍ଵ − 𝑍ଶ(1 − 𝑢)] + 𝑍ଶ𝑍ଶ̇(47) 

        The convergence of both 𝑍ଵ, and 𝑍ଶ to zero, imposes that the gradient of Vଶ takes the following form: 

𝑉ଶ̇ = −𝑐ଵ𝑍ଵ
ଶ −̇ 𝑐ଶ𝑍ଶ

ଶ(48) 
        According to this conclusion, the following equality is deduced: 

=>𝑍ଶ̇ − 𝑍ଵ + 𝐶ଶ𝑍ଶ = 0(49) 
Plugging 𝑍ଶ̇ from equation (45) into equation (50): 

ቂ
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+ 𝐼ௗ̈ − 𝑍1 + 𝐶2𝑍2 = 0(50) 

We extract �̇� from equation (50) to finally have the control law of our system: 
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(51) 
3) Zero Dynamics study 
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The zero dynamics study focuses on the deduction of the steady state duty cycle, when both the tracking errors 𝑍ଵ and 𝑍ଶ, as 

well as the control input gradient �̇� tend to zero. Since the tolerable range of the duty cycle is between 0 and 1, an equation of the 

control law 𝑢 is obtained:   

u =  
ି൤

1

C
−

r2

L2൨x1+ቂ
1

RC
+

r

L2ቃx2−
ipvs

C
−Id̈

ಽ²

ೝ.ಶ

(52)  

The idea behind the deduction of this control law, is to avoid the saturation of the control law while using (51), caused mainly by 
the accumulation of errors, due to the imprecision of both voltage and current sensors.  

 

C.  logic commutation criteria 

The choice of the bidirectional converter operation, whether to be a boost converter and discharge the battery or a buck converter 
and charge the battery depends on the sign of the reference battery current (bref), which can be calculated using the next equation:  

iୠ୰ୣ୤ =
ቈ

౒ౚౙ
మ

౎
ି୔౦౬቉

୚ౘ
(53)  

As for the choice criteria itself, it’s presented as follows:  

ቊ
if iୠ୰ୣ୤ > 0 => pୡ୦ > P୮୴       =>      𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝑎𝑠 𝑏𝑜𝑜𝑠𝑡 

if iୠ୰ୣ୤ < 0 => pୡ୦ < P୮୴       =>      𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝑎𝑠 𝑏𝑢𝑐𝑘
 (54) 

VII. EXPERIMENTAL VALIDATION 

To experimentally validate the control approaches, a small-scale hybrid system is assembled in the Renewable Energy Laboratory, 
where the implementation is performed using an Arduino Mega 2560 board. The explicit electronic scheme and the test bench is 
presented in figure (7) 

 

Figure 7: Picture of the Assembled Small-Scale Hybrid System in the RE Laboratory 

The results of the backstepping-controlled boost converter are presented in this section, with a static load of R=20 Ω, and a reference 
voltage of VDCref=25V 
 
The obtained curves from testing the controller while discharging the battery are presented in the next figures. 
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Figure 

Figure 10: the load’s power + the sum of the PV panel and the battery’s power

The curves illustrate power management on the battery side using a backstepping
continuous bus voltage (VDC) stabilizes at V

Battery hybrid system power management based on backstepping control

 

 

a) VDC (blue) + VDCRef(yellow) 

 

b) Ib(blue) + IbRef(yellow) 

Figure 8 : the obtained curves of the backstepping based controller : 

VDC ,VDCRef , Ib, IbRef. 

 

Figure 9 : the battery’s power 

 

: the load’s power + the sum of the PV panel and the battery’s power

The curves illustrate power management on the battery side using a backstepping-based controller via a boost DC
) stabilizes at VDC=21.5V, slightly below the reference value of 25V, showing a decrease of 

ping control           

: the load’s power + the sum of the PV panel and the battery’s power 

based controller via a boost DC-DC converter. The 
5V, slightly below the reference value of 25V, showing a decrease of 
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approximately 3.5V. The battery current closely approaches the reference value (IbRef=0.64A), maintaining oscillations between 
Ibmax=0.64A and Ibmin=0.5A due to coil effects. 

The combined power of the battery and PV panel fluctuates around Ptot=31W, matching the anticipated load power. However, the 
load's power hovers around Pch=23.5W, influenced by the reduced VDC. The PV panel's power oscillates around PPV=15W, while 
the battery's power compensates the load with a value around Pb=16W. 

Overall, these curves demonstrate effective power management in the hybrid system by the controller 

 Practical Obstacles 

During the work on this article, several obstacles posed challenges and impeded the progress, resulting in limitations that affected the 
attainment of optimal outcomes. Some of these obstacles included: 

-Faulty electrical and electronic components. 

-Inadequate wiring leading to signal distortion and interference. 

-The Arduino board's limited commutation frequency. 

-The microcontroller's restricted processing capabilities. 

To elaborate on the Arduino board's limitations, the PWM output frequency of the board is limited to f=490Hz, which is significantly 
lower than the required commutation frequency essential for achieving the desired system performance. This limited frequency range 
constrained our ability to accurately control and modulate the electrical signals, impacting the overall efficiency of the system. 

 

VIII. CONCLUSON  

Inthis research project, a PV-battery hybrid system was thoroughly investigated under the control of the nonlinear backstepping 
approach. Comprehensive insights into system components, models, and control laws were provided. Utilizing the Incremental 
Conductance MPPT algorithm with a DC-DC boost converter, power extraction from the solar panel was successfully optimized. Bus 
voltage regulation and battery control were effectively implemented using the backstepping method with a buck-boost converter, 
accommodating both discharging and charging modes. Simulations have demonstrated the effectiveness, responsiveness, robustness, 
and stability of the system and controls. It's acknowledged that experimental validation was limited to the discharging phase due to 
time constraints. Future work should encompass further experimental testing for a more comprehensive assessment. 
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