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Studying a Hidden Bifurcation and Finding Hopf
Bifurcation with Generated New Saturated

Function Series
Faiza Zaamoune1 and Tidjani Menacer2

ABSTRACT: In this article, a hidden bifurcation of the multispiral chaotic attractor generated by the new saturated function series has

been considered. The general shape of the chaotic attractors is described in terms of the number of spirals (also reffered to as multiscroll

attractor) governed by integer parameters p and q. Due to the integer nature of the parameter, it is not possible to observe bifurcations

from M spirals when the parameter is increased by two. However, by using the method of hidden bifurcations, an additional real

parameter ε was introduced to observe such bifurcations. Additionally, this added parameter allowed us to find the Hopf bifurcation of

the multispiral attractor generated by the new saturated function series transitioning from a stable state to a chaotic state. Furthermore,

the Routh-Hurwitz criterion was used to study the stability of the original equilibrium point of the system.
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1 INTRODUCTION

In nonlinear dynamics, chaotic systems and their dynamical characteristics are fascinating subjects (phys-
ical and engineering systems, climate models and global weather patterns and biological systems...). Such
dynamical systems produce significantly differing results for small differences in initial conditions (e.g.,
rounding errors in numerical computation), making long-term behavior prediction generally difficult. In
the last forty years, the scientific, mathematical, and engineering communities have devoted a great deal of
attention to the study of chaos, a highly fascinating and complicated nonlinear phenomenon [1], [2], [3], [4].

Dynamical behavior can be effectively explained by the bifurcation theory [5]. When a parameter
is changed, the dynamics of bifurcations of arbitrary invariant sets of dynamical systems seem more
appealing and complex [5]. Hopf bifurcation, sometimes called Poincare-Andronov-Hopf bifurcation, is
the local birth or death of a periodic solution (self-excited oscillation) from an equilibrium as a parameter
reaches a critical point [6].
Moreover, while most of these multiscroll generations have been known for a long time, bifurcation theory
has only lately been applied to their study [7]. They have also been identified for hidden attractors [8]
in the situation of infinitely many equilibria, as well as in the case where equilibrium points exist. The
number of scrolls (or spirals) for every multi scroll that is currently known is a fixed integer which is
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depends on one or more discrete characteristics [9].
In 2015, Menacer et al., introduced a hidden bifurcation theory and producing multiscrolls in a family
of systems (6) with a continuous bifurcation parameter, modified the paradigm of discrete parameters
[10]. This technique was discovered from the hidden attractor theory, first presented by Leonov et al.
[12], [13], [14], [15], [16], which constitutes the foundation for this hidden bifurcation theory. We applied
this technique to the 1 − D multiscroll chaotic attractors generated by saturated function series [17]. A
saturated function series was proposed for generating multi-scroll chaotic attractors, including 1-D n-
scroll, 2-D n × m-grid scroll, and 3-D n × m × l-grid scroll chaotic attractors [19], [20].
This paper provides two new findings: first, we examined a hidden bifurcation in 1-D multiscroll chaotic
attractors created by a new saturated function series. In comparison with previous results [10], [19] we
found the difference in behavior and form of spirals; second, we determined the Hopf bifurcation and
stability of the origin equilibrium point E0 concerning ε and we identified a critical point for both. After a
lot of calculation, we noticed that Hopf bifurcation was determined in this case only with these values set
to me for α = t1 = 0.72, β = γ = 0.8, k = 10, h = 20.

This paper is organized as follows: In Section 2, the model of multiscroll chaotic attractors generated by
the new saturated function series proposed is studied. In Section 3, the localization technique introduced
for hidden bifurcation in multiscroll chaotic attractors generated by new saturated function series. In
Section 4, Hopf bifurcation and stability of the origin equilibrium point E0 for ε. Finally, in secion 5, we
have a concluding comments. Appendix A presents the technique of Leonov et al., for seeking a hidden
attractor.

2 DESIGN MULTISPIRAL CHAOTIC ATTRACTORS FROM SATURATED FUNCTION SERIES.
One of the fundamental PWL circuits is the saturated circuit, which is widely known. Saturated circuit
characteristics are effectivly the PWL models for operational amplifiers [7]. This study presents a multi-
piecewise non-linear saturated series model [17], which has the following expression:

·
x = y
·
y = z
·
z = −αx− βy − γz + t1g(x; k;h; p; q),

(1)

where

g(x; k;h; p; q) =



y1,k if x > qh+ 1
y2,k,i if |x− ih| ≤ 1

−p ≤ i ≤ q
y3,k,i if l1,i < x < l2,i

−p < i < q − 1
y4,k if x < −ph− 1,

(2)

with
l1,i = ih+ 1 and l2,i = (i+ 1)× h− 1,

y1,k = (2q + 1) k, y2,k,i = k (x− ih) + 2ik,
y3,k,i = (2i+ 1) k and y4,k = − (2p+ 1) k.
Parameters p, q, h and k are integers, and α, β, γ, t1 are real numbers. This article aims to examine the
attractors’ overall form and global geometric characteristics, which are expressed in terms of the number
of spirals, a phenomenon referred to as a hidden bifurcation [11]. Hopf bifurcations [5]. This work identifies
structurally chaotic attractors with fixed real parameter values of α = t1 = 0.72, β = γ = 0.8, k = 10 and
h = 20 (see Fig. 1 and see Fig. 2). The following formula determines the number M of spirals based on
two integer inputs, p and q:

M = p+ q + 2. (3)
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Fig. 1: Proposed Saturated function series with k = 3, h = 7, p = 2, q = 2

3 HIDDEN BIFURCATIONS REVEALING TECHNIQUE

A distinctive technique for identifying hidden bifurcations was presented by Menacer et al. [5] to overcome
this issue. This technique builds on the concept of Leonov and Kuznetsov [8] for examining hidden
attractors (i.e., homotopy and numerical continuation, see Appendix A). This method is new when applied
to multiscroll chaotic attractors from saturated function series. In this section, we briefly review the process,
where the parameters values are fixed at α = t1 = 0.72, β = γ = 0.8, k = 10, h = 20.
Rewrite system (1)-(2) to the form:

dx

dt
= Fx+ ηΨ(δTx), x ∈ R.3. (4)

Where

F =

 0 1 0
0 0 1
−α −β −γ

 , η =

 0
0
t1

 , δ =

 1
0
0

 . (5)

Presenting the coefficient k∗ and small parameter ε, and describe system (4) as

dx

dt
= F0x+ ηεφ(δTx), (6)

where

F0 = F + k∗ηδT =

 0 1 0
0 0 1

k∗t1 − α −β −γ

 ,

ρF0
1,2 = ±iω0, ρF0

3 = −d.

By nonsingular linear transformation X = SY system (6) is became to the form

dy

dt
= Hy +Bεφ(cT y), (7)

where

H =

 0 −ω0 0
ω0 0 0
0 0 −d

 , B =

 b1
b2
1

 , c =

 1
0
−h

 . (8)

The transfer function WH(s) of system (7) can be presented as

WH(s) =
−b1s+ b2ω0

s2 + ω2
0

+
h

s+ d
. (9)



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 01–11 4

Fig. 2: (a) The 6-spiral attractor generated by equation (1) and (2) for p = q = 2 3-projection into the plane
(x, y), (b) The 6-spiral attractor generated by equation (1) and (2) for p = q = 2 3− projection into the plane
(x, y, z).

Also, utilizing the equality of transfer functions of systems (6) and system (7), we obtain:

WF0(s) = δT (F0 − sI)−1η. (10)

This implies the following relations:

k∗ =
α−ω2

0d
t1

,

d = c,
h = −t1

ω2
0+d2

= b1,

b2 =
−γ1

ω0(ω2
0+d2)

.

(11)

Since system (6) can be debilitated to the form (7) by the non-singular linear transformation defined in
(A), the following relations can be acquired:

H = S−1F0S, B = S−1η, cT = δTS. (12)

To solve these matrix equations, we obtain the following transformation matrix :

S =

 S11 S12 S13
S21 S22 S23
S31 S32 S33

 ,
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Fig. 3: 2 spiral for ε=0.35 Fig. 4: 4 spirals for ε=0.94

with
S11 = 1, S12 = 0 , S13 = −h
S21 = 0, S22 = −ω0, S23 = dh
S31 = −ω3

0 , S32 = 0, S33 = d2h.
(13)

3.1 Numerical Results of the Hidden Bifurcation Technique
Using (A), with a sufficiently small ε we computed initial data for the first step of multistage localization
procedure

X(0) = SY (0) = S

 ς0
0
0

 =

 ς0S11
ς0S21
ς0S31

 . (14)

For system (4), this gives the initial data

X0(0) = (x0(0) = ς0, y
0(0) = 0, z0(0) = −ς0ω3

0.). (15)

The localization process outlined previously is now applied to system 1 with numerous spiral attrac-
tors. In order to accomplish this, we calculate a harmonic linearization coefficient and the initial frequency
ω0 as described in the Appendix:

ω0 = 0.86, k∗ = 0.32. (16)

Next, we compute the solutions to system (6) with the nonlinearity εφ(x) = ε(ψ(x)− k1x). To do this,
we start at the beginning with step 0.35 and increase ε successively from the value ε = 0.35 to ε = 1. The
starting data for the solutions for increasing values of ε, as shown in Table 1, is obtained via (15). So, from
the Table 1, we obtain the solutions X1(0) with one scroll to X4(0) (See Fig. 3 to Fig 6). In each figure, there
is a variant an even number of spirals in the attractor. The number of spirals increases by 2 at each step
as shown on Table 2 from 2 to 6 spirals. The values of ε in this table are totally the values of bifurcation
points.

Values of ε Xi(0) x0 y0 z0
0.42 X1(0) = X1(tmax) −0.57 0 0.1252

0.94 X2(0) = X2(tmax) −13.8295 1.7315 5.3924

0.98 X3(0) = X3(tmax) 27.1245 3.2587 −8.2567

1 X4(0) = X4(tmax) −1.1235 −2.1587 −7.2025

Table 1: Initial data according to the values of ε

Table 2: Values of the parameter ε at the bifurcation points for p = q = 2

Values of ε 0.35 0.94 0.98 1
Number of spirals 2 spiral 4 spirals 6 spirals 6 spirals
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Fig. 5: 6 spirals for ε=0.98 Fig. 6: 1 spirals for ε=1

4 HOPF BIFURCATION AND STABILITY OF THE ORIGIN EQUILIBRIUM POINT E0 WITH RESPECT
TO ε

4.1 Stability of the Origin Equilibrium Point E0 with Respect to ε

In the system (1)-(2) we have 2(p+q)+3 equilibrium points. They have a positive eigenvalue and a pair of
complex eigenvalues with negative real parts. This means that all equilibria of the system are saddle points
[17]. Using the conditions established by Routh-Hurwitz [18], we examine the stability of the equilibrium
point E0 in relation to the epsilon of the system (6). In [11], Menacer et al. present the idea of hidden
bifurcation in the Chua system by including a new parameter, epsilon, that regulates the spiral number.
The number of scrolls reduces as ε increases from 0 to 1. The following polynomial yields the eigenvalues
equation corresponding to this equilibrium point:

P (s) = s3 + a1s
2 + a2s+ a3. (17)

Using the result of the Routh-Hurwitz conditions, where the necessary and sufficient condition for the
equilibrium point E to be locally asymptotically stable is a1 > 0, a3 > 0 and a1 × a2 − a3 > 0.

In our study, we study the stability and Hopf bifurcation with respect to the parameter ε and the
parameters values are α = t1 = 0.72, β = γ = 0.8, p = q = 2, k∗ = 0.32. An equilibrium point of system (1)
independent of epsilon is the origin E0(0, 0, 0). The evaluation of the Jacobian matrix at the equilibrium
point E0(0, 0, 0) is:

JE0 =

 0 1 0
0 0 1

−αk∗ + αε(k∗ + k) −β −γ

 =

 0 1 0
0 0 1

0.2304 + ε6.7104 −0.8 −0.8

 .

Its characteristic polynomial is:

P (s) = s3 + 0.8s2 + 0.8s+ (0.2304 + ε6.7104).

The necessary and sufficient requirement for the equilibrium point is stated in the Routh-Hurwitz criteria.
E0 to be stable is 0.0343 < ε < 0.1297.

Proof. we applied the Routh-Hurwitz criteria for origin equilibrium point (0,0,0) we found:

First condition : a1 = 0.8 > 0 (18)
Second condition : a3 = 0.2304 + ε6.7104 > 0 =⇒ ε > 0.0.0343; (19)

Third condition : a1 × a2 − a3 = 0.64− 6.7104ε > 0 =⇒ ε < 0.1297 (20)

so E0 to be stable when: 0.0343 < ε < 0.1297.

Remark
For the special case ε = 0 : the system (1) becomes linear so the attractor as a limit cycle unstable see the
figure below :
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Fig. 7: The system’s attractor (1), in which ε = 0: limit of an unstable cycle.

4.2 Analysis of Hopf Bifurcation at the Origin Equilibrium Point E0 Regarding ε

The system (1) attached by the formula (2) has 2(p+q)+3 equilibrium points which we find by comparing
the right sides of the system to zero and which are given in [17]. We studied Hopf bifurcation at the point
(0, 0, 0) with the values α = t1 = 0.72, β = γ = 0.8, p = q = 2. The conditions of system (1) with p = q = 2,
to undergo a Hopf bifurcation at the equilibrium point E(0, 0, 0) when ε = ε∗

-The Jacobian matrix has two complex-conjugate eigenvalues s1,2 = Θ(ε)± iω(ε) and one real s3(ε),
-Θ(ε∗) = 0, and s3(ε

∗) ̸= 0,
-ω(ε∗) ̸= 0,
-dΘdε |ε=ε∗ ̸= 0.

Proposition 1. The system (1) undergoes a Hopf bifurcation at E(0, 0, 0), when the parameter ε crosses the critical
values ε∗ = 0.16039.

Proof. For the first condition : Θ(0.16039) = 0, and s3(0.16039) = −0.89444 ̸= 0,
For the second condition: ω(0.16039) = −0.80002 ̸= 0
For the last condition : dΘ

dε |ε=0.16039 = 0.46988 ̸= 0.
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(a)

(b)

Fig. 8: The results of Hopf bifurcation analysis (a): The bifurcation diagram for the critical point
ε∗ = 0.16039 , (b) : Clarify The bifurcation diagram for the critical point ε∗ = 0.16039.
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5 CONCLUSION

This article examines hidden bifurcations of the multispiral Chaotic attractor produced by the newly
discovered saturation function series. The number of spirals, or multiscroll attractor, determined by the
integer parameters p, q, has been used to characterize the overall shape of the chaotic attractors. When
this parameter is increased by two, bifurcations from M spirals cannot be observed because of its integer
character. Nevertheless, an extra real parameter ε was added in order to observe such bifurcations using
the hidden bifurcation approach. Additionally, the Hopf bifurcation of the multispiral attractor produced
by the new saturated function series from a stable state to a chaotic state may be found thanks to this
additional parameter. Furthermore, the stability of the system’s initial equilibrium point was examined
using the Routh-Hurwitz criteria. In our futur works, we will provide to find a hidden attractors and
hidden bifurcations in new systems.

APPENDIX A
TECHNIQUE OF LEONOV ET AL FOR SEEKING A HIDDEN ATTRACTOR

The technique for seeking attractors of multidimensional nonlinear dynamical systems with scalar non-
linearity was proposed by Leonov [12] and Leonov et al. [8], [13], [14], [15], [16]. Their technique is based
on numerical continuation: a series of linked systems is built such that, for the first system (the starting
system), the initial data for the numerical computation of a potential oscillating solution (the starting
oscillation) can be obtained analytically. The proposed technique is extended in [16], [10] to the system of
the form

U̇ = PX + qF (rTX), X ∈ Rn, (21)

where q, r are constant n-dimensional vectors, F (σ) is a continuous piece- wise differential function
reaching the condition F (0) = 0, and T implies transpose operation. P is a constant n× n-matrix.

Here, we outline their technique for the simplified case when n = 3. Thus, we take into consideration
the equation.

Ẋ = PX + qF (rTX), U ∈ R3, (22)

where F (σ) is a continuous nonlinear function.

They then define a coefficient of harmonic linearization ϑ (suppose that such ϑ exists) in such a way
that the matrix

P0 = P + ϑqrT , (23)

of the linear system
Ẋ = PX, (24)

has a pair of purely imaginary eigenvalues ±iω0, (ω0 > 0 ) and the other eigenvalue has negative real
part. In practice, to determine ϑ and ω0 they use the transfer function W (τ) of system(21)

W (τ) = r(P − τI)−1q, (25)

where τ is a complex variable and I is a unit matrix. The number ω0 > 0 is determined from the
equation Iς W (iω0) = 0 and ϑ is calculated by the formula ϑ = −ReW (iω0)

−1.

Therefore, system (21) can rewrite as

Ẋ = P0X + qf(rTX), X ∈ R3, (26)

where f(σ) = F (σ)− ϑσ.

Following that, they introduce a finite sequence of continuous functions f0(ς), f1(ς), ..., fm(ς) in such a
way that the graphs of neighboring functions f j(ς) and f j+1(ς), (j = 0, ...,m− 1) in a sense, slightly differ
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from each other, the function f0(ς) is small and fm(ς) = f(ς). The function f0(ς), allows the application
the method of harmonic linearization (describing function method) to the system

Ẋ = P0X + qf0(rTX), X ∈ R3, (27)

if the stable periodic solution X0(t) close to harmonic one is determined. Then for the localization of an
attractor of the original system (26), one can follow numerically the transformation of this periodic solution
(a starting oscillating is an attractor, not including equilibrium, denoted further by A0) simply increasing j.

By non singular linear transformation S (X = SZ) the system (27) can be reduced to the form
ż1(t) = −ω0z2(t) + b1g

0(z1(t) + cT3 z3(t))
ż2(t) = ω0z1(t) + b2g

0(z1(t) + cT3 z3(t))
ż3(t) = a3z3(t) + b3g

0(z1(t) + cT3 z3(t))
, (28)

where z1(t), z2(t), z3(t) are scalar values, a3, b1, b2, b3, c3 are real numbers and a3 < 0.

The describing function H is defined as

H(ς) =

2π
ω0∫
0

g(cos(ω0t)ς) cos(ω0ς)dt. (29)

Theorem 2. [8] If it can be found a positive ς0 such that

H(ς0) = 0, b1
dH(ς)

dς
|ς=ς0< 0,

has a stable periodic solution with initial data X0(0) = S(z1(0), z2(0), z3(0))
T at the initial step of algorithm

one has z1(0) = ς0+O(ε), z2(0) = 0, z3(0) = On−2(ε), where On−2(ε) is an (n− 2)-dimensional vector such that
all it’s components are O(ε).
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