logo

Authors

ABDELHAMID TALLAB University Pole, Road Bourdj Bou Ar- reiridj, M’sila 28000, Algeria Author
AYMEN AMMAR Sfax, Tunisia Author
CHOONKIL PARK Seoul 04763, Korea Author

DOI:

https://doi.org/10.69717/ijams.v2.i2.146

Keywords:

non-Archimedean Banach space, non-Archimedean T -normed space, fixed point, R-weakly commuting mappings

Abstract

In this paper, we introduce the concept of T -normed space in a non-Archimedean space, which is called a non-Archimedean T -normed space and give some properties. After that we prove a common fixed point theorem in a complete non-Archimedean T –normed space for two R-weakly commuting mappings.

AMS subject classification. 47H10, 47A10, 47A55.

 Communicated Editor: S. Beloul.

Manuscript received July 07,2025; revised November 03, 2025; accepted Dec 01, 2025; published December 05, 2025.

Downloads

Download data is not yet available.

Author Biographies

  • ABDELHAMID TALLAB , University Pole, Road Bourdj Bou Ar- reiridj, M’sila 28000, Algeria

    Department of Mathematics, University of Mohamed Boudiaf of M’sila, Laboratoire d’Analyse Fonctionnelle et G´eom´etrie des Espaces, University Pole, Road Bourdj Bou Arreiridj, M’sila 28000, Algeria

  • AYMEN AMMAR, Sfax, Tunisia

    Department of Mathematics, University of Sfax, Faculty of Sciences of Sfax, Soukra Road Km 3.5, B. P. 1171, 3000, Sfax, Tunisia

  • CHOONKIL PARK, Seoul 04763, Korea

    Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea

References

Bakhtin, I. A. (1989). The contraction principle in quasimetric spaces. Functional Analysis, 30, 26–37. Google Scholar.

Branciari, A. (2000). A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen, 57, 31–37. Google Scholar. View.

Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Mathematica Informatica Universitatis Ostraviensis, 1, 5–11. Google Scholar. http://dml.cz/dmlcz/120469

Derouiche, D., & Ramoul, H. (2020). New fixed point results for F-contractions of Hardy–Rogers type in b-metric spaces with applications. Journal of Fixed Point Theory and Applications, 22, Article 86. Google Scholar. https://doi.org/10.1007/s11784-020-00822-4.

Diagana, T. (2005). Towards a theory of some unbounded linear operators on p-adic Hilbert spaces and applications. Annales Mathématiques Blaise Pascal, 12(1), 205–222. Google Scholar. https://doi.org/10.5802/ambp.203.

Diagana, T. (2007). Non-Archimedean linear operators and applications. Nova Science Publishers. Google Scholar. View

Diagana, T., & Ramaroson, F. (2016). Non-Archimedean operator theory. Springer. Google Scholar. https://doi.org/10.1007/978-3-319-27323-5

Diarra, B. (1998). An operator on some ultrametric Hilbert spaces. Journal of Analysis, 6, 55–74. Google Scholar.

Diarra, B. (2009). Bounded linear operators on ultrametric Hilbert spaces. African Diaspora Journal of Mathematics, 8(2), 173–181. Google Scholar.

Hensel, K. (1905). Über eine neue Begründung der Theorie der algebraischen Zahlen. Journal für die reine und angewandte Mathematik, 128, 1–32. Google Scholar. https://doi.org/10.1515/crll.1905.128.1

Hussain, N., Mitrović, Z. D., & Radenović, S. (2019). A common fixed point theorem of Fisher in b-metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), 113, 949–956. Google Scholar. https://doi.org/10.1007/s13398-018-0524-x.

Monna, A. F. (1943). On non-Archimedean linear spaces. Nederlandsche Akademie van Wetenschappen. Verslagen. Afdeeling Natuurkunde, 52, 308–321. Google Scholar.

Pant, R. P. (2000). Non compatible maps and common fixed points. Soochow Journal of Mathematics, 26, 29–35. Google Scholar. https://sid.ir/paper/638009/en

Pant, V., & Pant, R. P. (2007). Fixed points in fuzzy metric space for non compatible maps. Soochow Journal of Mathematics, 33, 647–655. Google Scholar.

Petalas, C., & Vidalis, T. (1993). A fixed point theorem in non-Archimedean vector spaces. Proceedings of the American Mathematical Society, 118, 819–821. Google Scholar. https://doi.org/10.1090/S0002-9939-1993-1132421-2.

Roshan, J. R., Parvaneh, V., Kadelburg, Z., & Hussain, N. (2016). New fixed point results in rectangular b-metric spaces. Nonlinear Analysis: Modelling and Control, 21, 614–634. Google Scholar. https://doi.org/10.15388/NA.2016.5.4

Saadati, R., & Sedghi, S. (2006). A common fixed point theorem for R-weakly commutating maps in fuzzy metric spaces. Proceedings of the 6th Iranian Conference on Fuzzy Systems, 387–391.Google Scholar.

Sedghi, S., Shobe, N., & Firouzian, S. (2012). Some properties of generalized ultrametric spaces. Journal of Fuzzy Mathematics, 21, 1–8.

Taylor, A. E. (1958). Introduction to functional analysis. John Wiley & Sons; Chapman & Hall. Google Scholar.

Vasuki, R. (1999). Common fixed points for R-weakly commuting maps in fuzzy metric spaces. Indian Journal of Pure and Applied Mathematics, 30, 419–423. Google Scholar.

Downloads

Published

2025-12-05

How to Cite

Fixed  Point in Non-Archimedeant T -Banach Spaces. (2025). International Journal of Applied Mathematics and Simulation, 2(2), 42-47. https://doi.org/10.69717/ijams.v2.i2.146