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abstract

The present paper provides a new technique using the clique polynomials as basis function for the opera-
tional matrices to obtain numerical solutions of third-order non-linear ordinary differential equations. It
aims to find all solutions as easy as possible. Numerical results derived using the proposed techniques are
compared with the exact solution or the solutions obtained by other existing methods. The new numerical
examples were examined to show that the new approach is highly efficient and accurate. The approximate
solutions can be very easily calculated using computer program Matlab.
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1. Introduction

Many problems in physics, chemistry, and engineering science are modeled as third-order boundary value prob-
lems or initial value problems. These boundary value problems can be found in different areas of applied
mathematics and physics such as, in the deflection of a curved beam having a constant, thin-film flow, and
gravity-driven flows (see Momoniat and Mahomed, 2010; Tuck and Schwartz, 1990). Most nonlinear differen-
tial equations do not have exact solutions, so approximation and numerical techniques must be used. Many
researchers developed some methods to solve boundary and initial value problems of different order such as
Agarwal, 1986; Butcher, 2016; Fatima, 2024 and others. In this paper, we focus on initial value problems of
third-order nonlinear ordinary differential equations.{

y′′′ = f (x, y (x) , y′ (x) , y′′ (x))
y (x0) = α, y′ (x0) = β, y′′ (x0) = γ, x ∈ [x0, xend]

(1)

where y(x) ∈ R, f := R × R × R × R → R is a continuous function and α, β and γ are constants. Several
direct methods are widely proposed by researchers in solving third-order differential equations such as iterative
method, Traub’s method Chun and Kim, 2010, block method Abu Arqub et al., 2013; Mehrkanoon, 2011; Yap
et al., 2014, Runge-Kutta method Fang et al., 2014; Lee et al., 2020; You and Chen, 2013, operational matrices
of Bernstein polynomials method Khataybeh et al., 2019; Malik et al., 2021 and more.
The main of this paper is to apply the new operational matrix of integration method using clique polynomials
to solve the third-order initial value problems. It is shown that the method provides the solution in a rapid
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convergent series. The other operational matrix method using clique polynomials has been used by Kumbinara-
saiah et al., 2021 and Ganji et al., 2021 to solve effectively the non linear Klein Gordon equation and non-linear
fractional Klein Gordon equation, which converge rapidly to accurate solutions. We show that the initial value
problems of third-order can be solved efficiently using the clique polynomials. The present method converts
Eq. (1) to a system of algebraic equations which can be solved easily. The capability of the method shall be
tested on a linear and nonlinear third-order differential equations.
This paper is arranged as follows. In Section 2, we give the interesting properties of clique polynomials and
there convergence analysis. In Section 3, we construct the operational matrix technique using the clique poly-
nomials for solving numerically the nonlinear third-order differential equations. Section 4 includes to present
several results and discussions to show the efficiency and simplicity of the proposed method. Finally, conclusion
is given in Section 5.

2. Clique polynomials and convergence analysis

Let G be a graph that is free from multi edges and loops. The clique polynomial of a graph G, denoted by
C(G;x), is characterized by Hoede and Li, 1994

C(G;x) =

n∑
k=0

akx
k

where ak represent the total distinct k−cliques in graph of size k, with a0 = 1. The clique polynomial of a
complete graph Kn with n−vertices is given by

C (Kn;x) = (1 + x)
n
=

n∑
k=0

(
n

k

)
xk

where
(
n
k

)
= n!

k!(n−k)!

In particular

C(K0;x) = 1

C(K1;x) = 1 + x

C(K2;x) = 1 + 2x+ x2

C(K3;x) = 1 + 3x+ 3x2 + x3

Let B = {Cn(x) = C(Kn, x), n ∈ N}. Clearly B is Banach space on closed subset A of R with norm given by

∥Cn∥ = sup |Cn (x)|
∀x∈A

∀Cn ∈ B (A)

We can approximate any function f(x) in L2[0, 1] in terms of the clique polynomial as (see Ganji et al.,
2021; Kumbinarasaiah et al., 2021 )

f (x) ≈ f̃ (x) =

n−1∑
i=0

aiC (Ki;x)

We can write

f (x) =

n−1∑
i=0

ai(

i∑
k=0

(
i

k

)
xk) = ATPX (x)

where AT = [a0, a1, . . . , an−1], X(x) = [1, x, . . . , xn−1]T and P is the lower triangular n×n matrices defined by

pij =

{
0 j > i, i, j = 1, 2, ..., n

(i−1)!
(i−j)!(j−1) i ≥ j, i, j = 1, 2, ..., n

3. Description of the clique polynomial operational matrix method

We consider the clique polynomial operational matrix method along with collocation points to solve the following
third-order of differential equations

y(3) = f(x, y, y′, y′′), 0 ≤ x ≤ 1 (2)
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with the initial conditions
y(0) = b1, y

′ (0) = b2, y
′′
(0) = b3 (3)

where b1, b2, b3 are real constants and f is a given continuous on [0, 1], nonlinear function. We assume that

y′′′ (x) = ATPX (x) (4)

Where A is an unknown vector to be determined AT = [a0, a1, . . . , an−1], X (x) is the known vector defined
above and

P =



1 0 0 0 · · · 0
1 1 0 0 · · · 0

1 2 1
. . . · · · 0

1 3 3
. . . 0 0

...
...

...
. . . 1 0

1 n− 1 (n−1)(n−2)
2! · · · n− 1 1


For solving the equation (2), we calcul the derivatives y(k)(x) where k = 0, 1, 2, 3, x ∈ [0, 1] and with the initial
conditions (3)

It is easy to prove that this identity∫ x

0

∫ x

0

...

∫ x

0
k times

ATPX (t) dt = ATPMkx
kX (x)

where Mk is the n× n matrices

Mk =



1
k! 0 0 · · · 0
0 1

2×3×...(k+1) 0 · · · 0

0 0 1
3×4×...(k+2)

. . . 0
...

...
. . . . . . 0

0 0 · · · 0 1
n(n+1)...(n+k−1)


Integrating equation (4) third times on bothside with respect to x limit between 0 and x, we obtain

y (x) = b1 + b2x+
b3
2
x2 +

∫ x

0

∫ x

0

∫ x

0

ATPX(t)dt

After integration yields

y (x) = b1 + b2x+
b3
2
x2 +ATPM3x

3X(x)

where

M3 =



1
3! 0 0 · · · 0
0 1

4! 0 · · · 0

0 0 1
3×4×5

. . . 0
...

...
. . . . . . 0

0 0 · · · 0 1
n(n+1)(n+2)


Now by substituting y, y′, y′′, y′′′ into equation (2) and collocate this equation by the following collocation

points xi =
2i−1
2n , i = 1, ..., n, we get a system of n non linear equations with n unknowns (a0, a1, ..., an−1). The

unknown coefficients are determined by satisfying the remaining the initial conditions (3) at chosen collocation
points. This system can be solved by using the Newton method.

4. Numerical results

In order to test the proposed method, we present some numerical results obtained by applying operational ma-
trix method to find numerical approximations of the solutions of some test problems

(
xi =

1
10 i; i = 0, 1, ..., 10

)
.

We will discuss the new numerical examples of third-order initial value problems. The tables 1-4 clearly show
the improvements we achieved if compared to the exact solution. Figures 1, 3 and 5 show the comparison
between the numerical solutions and the exact solutions of the initial value problems (Examples 1-3). Exam-
ining these tables, it is clear that the absolute errors were seem to be small. It is should be noted that the
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Table 1: Numerical results for Example 1 (n = 10)
x Exact solution Numerical solution Errors
0 −1 −1 0
0.1 −0.994995834721974 −0.994995834723177 1.20281562487889E − 12
0.2 −0.979933422158758 −0.979933422162680 3.92197385679083E − 12
0.3 −0.954663510874394 −0.954663510881710 7.31581462076747E − 12
0.4 −0.918939005997115 −0.918939006007955 1.08402176124400E − 11
0.5 −0.872417438109627 −0.872417438122700 1.30726540703563E − 11
0.6 −0.814664385090322 −0.814664385113334 2.30125918321278E − 11
0.7 −0.745157812715512 −0.745157812779116 6.36040109469604E − 11
0.8 −0.663293290652835 −0.663293290813850 1.61015867305991E − 10
0.9 −0.568390031729336 −0.568390032047044 3.17708304109487E − 10
1 −0.459697694131860 −0.459697694888935 7.57074403168190E − 10

approximate solution approaches the exact solution as n, the number of the basis functions, increases. All
numerical computations have been done in Matlab (see Matlab program below), the program execution time
by this method is 47 second.
Where

Absolute error= |Exact solution − Numerical solution|

Example 1 Consider the linear third-order initial value problem

y′′′ = sin(x), 0 ≤ x ≤ 1 (5)

with initial conditions
y (0) = −1, y′ (0) = 0, y′′ (0) = 1 (6)

The analytic solution of the above problem is

y = cos(x) + x2 − 2 (7)

We have
y(x) = −1 +

1

2
x2 +ATPM3x

3X(x)

Substituting equation (4) into (5) yields
ATPX (x) = sin(x)

We collocate this equation at the collocation points xi =
2i−1
2n , i = 1, ..., n to obtain numerical values of y. By

using the conditions (6), the obtained system is solved, yielding the following results for n = 10

A =



−0.810695
0.332789
1.038764
−1.157273
1.142639
−0.856889
0.418821
−0.129569
0.023261
−0.001849


Table 1 and 2 show that the numerical solutions and the errors obtained for linear third-order initial value
problem (5) (Example 1) by using the present method and compared with the exact solution (7) for n = 10 and
n = 15 respectively. Figure 1 shows the comparison between the approximate solution and the exact solution
(7) of the problem (5). In Figure 2, the absolute errors have been shown at distinct points.
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Figure 1: Comparison of approximate and exact solution for Example 1.
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Figure 2: Error Analysis of Example 1.
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Table 2: Numerical results for Example 1 (n = 15)
x Exact solution Numerical solution Errors
0 −1 −1 0
0.1 −0.994995834721974 −0.994995834721283 −9.7666319476275E − 13
0.2 −0.979933422158758 −0.979933422154582 −6.9754202414174E − 12
0.3 −0.954663510874394 −0.954663510866042 −2.57520671453904E − 11
0.4 −0.918939005997115 −0.918939005974870 −6.47839559775321E − 11
0.5 −0.872417438109627 −0.872417438040750 −1.19521503805231E − 10
0.6 −0.814664385090322 −0.814664384930306 −1.78378645188104E − 10
0.7 −0.745157812715512 −0.745157812411764 −2.44772868640553E − 10
0.8 −0.663293290652835 −0.663293290068459 −3.49193451931740E − 10
0.9 −0.568390031729336 −0.568390030578339 −5.29264299053978E − 10
1 −0.459697694131860 −0.459697691704301 −7.88076048863218E − 10

Example 2 Consider the linear third-order initial value problem

y′′′ = 8e2x + 2, 0 ≤ x ≤ 1 (8)

with initial conditions
y (0) = −2, y′ (0) = 2, y′′ (0) = 4 (9)

The analytic solution of the above problem is

y (x) = e2x +
1

3
x3 − 3 (10)

By solving the equation (8) with conditions (9) we obtain the vector A for n = 10

A =



3.099290
2.071009
2.360541
1.332371
0.476479
0.862816
−0.466501
0.338103
−0.090077
0.015966


Table 3 shows that the approximate solutions and the errors obtained for linear third-order initial value problem
(8) (Example 2) and compared with the exact solution (10) for n = 10. Figure 3 shows the comparison between
the approximate solution and the exact solution of the problem (8). Figure 4 shows the error Analysis of
Example 2.
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Figure 3: Comparison of approximate and exact solution for Example 2.
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Table 3: Numerical results for Example 2 (n = 10)
x Exact solution Numerical solution Errors
0 −2 −2 0
0.1 −1.778263908506500 −1.77826390851309 6.58939569575523E − 12
0.2 −1.505508635692060 −1.50550863571379 2.17246221012601E − 11
0.3 −1.168881199609490 −1.16888119964800 3.85114162781970E − 11
0.4 −0.753125738174199 −0.753125738236310 6.21112050680495E − 11
0.5 −0.240051504874288 −0.240051504963057 8.87692142015339E − 11
0.6 +0.392116922736547 +0.392116922630138 1.06409547839803E − 10
0.7 +1.169533300178010 +1.169533300081640 9.63700230727227E − 11
0.8 +2.123699091061780 +2.123699090985880 7.59063922828318E − 11
0.9 +3.292647464412950 +3.292647464403680 9.26281273905261E − 12
1 +4.722389432263980 +4.722389431036580 1.22740306807145E − 09

Table 4: Numerical results for Example 3
x Exact solution Numerical solution for n = 7 Numerical solution for n = 10

0 1 1 1
0.1 0.90483741803590 0.90483741804721 0.90483741803568
0.2 0.81873075307798 0.81873075312857 0.81873075307623
0.3 0.74081822068171 0.74081822079209 0.74081822067633
0.4 0.67032004603563 0.67032004622430 0.67032004602522
0.5 0.60653065971263 0.60653065999590 0.60653065969547
0.6 0.54881163609402 0.54881163648641 0.54881163606573
0.7 0.49658530379141 0.49658530430750 0.49658530374543
0.8 0.44932896411722 0.44932896476990 0.44932896404636
0.9 0.40656965974059 0.40656966054202 0.40656965963669
1 0.36787944117144 0.36787944214112 0.36787944102411

Example 3 Consider the non-linear third-order initial value problem

y′′′ + y′′ + y′y = −e−2x, 0 ≤ x ≤ 1 (11)

with initial conditions
y (0) = 1, y′ (0) = −1, y′′ (0) = 1 (12)

The analytic solution of the above problem is

y (x) = e−x (13)

By solving the equation (11) with conditions (12) we obtain the vector A for n = 10

A =



−2.197399
−0.840032
9.378083

−18.330639
20.881442
−15.525444
7.625636
−2.391506
0.434777
−0.034917


Table 4 and 5 show that the numerical solutions and the errors obtained for non-linear third-order initial value
problem (11) (Example 3) and compared with the exact solution (13) for n = 7 and n = 10 respectively. Figure
5 shows the comparison between the approximate solution and the exact solution of the problem (11). Figure
6 shows the error Analysis of Example 3.
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Table 5: Errors obtained for Example 3
x Errors for n = 7 Errors for n = 10

0 0 0
0.1 1.12592157819336E − 11 2.74891220897189E − 13
0.2 5.05927522098659E − 11 1.74982250911171E − 12
0.3 1.10377484929813E − 10 5.38702416008618E − 12
0.4 1.88661086752973E − 10 1.04127817479593E − 11
0.5 2.83306489379243E − 10 1.71629377376803E − 11
0.6 3.92390342440763E − 10 2.82878165336342E − 11
0.7 5.16110376658219E − 10 4.59714488698637E − 11
0.8 6.52678022738939E − 10 7.08584302344661E − 11
0.9 8.01421373708422E − 10 1.03907771276113E − 10
1 9.69684443852259E − 10 1.47327927635388E − 10

Table 6: Numerical results for Example 4 (n = 10 and B = 1)
x Hb. method Adesanya et al., 2013 Bp. method Khataybeh et al., 2019 (CP) method
0.1 0.004999979166110 0.0049999583341723 0.004999958453095
0.2 0.019998666668590 0.0199986668419935 0.019998667405196
0.3 0.044998481293978 0.0449898794745896 0.044989880928476
0.4 0.079991467388617 0.0799573779857994 0.079957380252171
0.5 0.124967454367055 0.1248700575229549 0.124870060064380
0.6 0.179902837409194 0.1796771412454840 0.179677143791334
0.7 0.244755067600357 0.2443036169821510 0.244303617750305
0.8 0.319454500640289 0.3186460093102460 0.318646005190335
0.9 0.403894871267148 0.4025686205525250 0.402568610236483
1 0.497922483110430 0.4959003827831510 0.495900375094189

Example 4 Now consider the nonlinear boundary layer equation

2y′′′ + y′′y = 0, 0 ≤ x ≤ 1 (14)

with initial conditions
y (0) = 0, y′ (0) = 0, y′′ (0) = B (15)

This equation is famously known as the Blasius equation. The aim of solving Blasius equation to get the value
y′′ (0) to evaluate the shear stress at the plate. Blasius equation has been solved using different methods like
series expansions, Runge Kutta, differential transformation and others. By solving the Equation (14) with
conditions (15) we obtain the vector A for n = 10 and B = 1

A =



−5.258858
34.500595

−102.128598
176.867272
−196.065300
143.930229
−69.967095
21.716530
−3.904633
0.309859


Table 6 show that the numerical solutions for non-linear Blasius equation (14) (Example 4) by using presented
method ((CP) method) and compared with another numerical methods for n = 10 and B = 1 (Hb. method
is Hybrid block method and Bp is Bernstein polynomials). In all the above the results, it is noticed that the
numerical solutions achieved by our method coincide quite well with other methods available in the literature
and signify that the proposed method is viable and convergent.
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5. Conclusion

In this paper, we introduced an effective operational matrix method for solving nonlinear third-order of non-
linear ordinary differential equations by constructing a new matrices using the clique polynomials. The proposed
approach has been successfully applied to various numerical examples to demonstrate its applicability and accu-
racy. Numerical simulations confirm that the approximate solutions are in excellent agreement with solutions
obtained by other existing methods or exact solution, and a highly accurate solution can be obtained in a
few iterates, which is apparent through numerical results. The proposed algorithm is an efficient and highly
promising technique for solving third-order non-linear ordinary differential equations. The method might be
applied for a system of differential equations or higher order of boundary value problems.
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