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abstract

We study a mathematical model for a quasistatic behavior of electro-viscoelastic materials. The problem
is related to highly nonlinear and non-smooth phenomena like contact, friction and normal compliance
with wear. Then, a fully discrete scheme is introduced based on the finite element method to approximate
the spatial variable and the backward Euler scheme to discretize the time derivatives. For a numerical
scheme, we prove the existence and uniqueness of the solutions, and derive optimal order error estimates
under certain regularity assumption on the solution of the continuous problem.
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1. Introduction

The piezoelectric effect is characterized by the coupling between the mechanical and electrical behavior of
the materials. It consists of the appearance of electric charges on the surfaces of some crystals after their
deformation. Conversely, experiments have shown that the action of an electric field on the crystals can generate
stresses and deformations. A deformable material which presents such a behavior is called a piezoelectric
material. Piezoelectric materials are used extensively as switches and actuators in many engineering systems,
in radioelectronics, electroacoustics and measuring equipments. However, there are very few mathematical
results concerning contact problems involving piezoelectric materials and therefore there is a need to extend
the results on models for contact with deformable bodies which include coupling between mechanical and
electrical properties. General models for elastic materials with piezoelectric effects can be found in Batra and
Yang, 1995 and Ikeda, 1996. In Moumen and Rebiai, 2024 , the authors examine a transmission system of
the Schrödinger equation with Neumann feedback control, which includes a time-varying delay term and acts
on the exterior boundary. They utilize an appropriate energy function and a suitable Lyapunov functional.
The authors of Acil et al., 2024 demonstrate the system’s robustness, stability, and ability to respond to fast
changes, making it a promising solution for efficient energy management in hybrid PV-battery systems. A
static frictional contact problem for electric-elastic materials was considered in Maceri and Bisegna, 1998 and
Migórski, 2006. Contact problems with friction or adhesion for electro-viscoelastic materials were studied in
Selmani and Selmani, 2010 and Lerguet et al., 2007 and recently in Migórski et al., 2011 in the case of an
electrically conductive foundation.
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In this paper we consider a mathematical model for the process of contact with normal compliance and
friction contact conditions when the wear of the contact surface due to friction is taken into account. The
foundation is assumed to move steadily and only sliding contact takes places. The material is electro-viscoelastic
with long memory, defined by a relaxation operator.

This work constitutes in some sense a continuation paper of the results obtained in Selmani, 2013. The
work in Selmani, 2013 has been devoted to a qualitative results like existence and uniqueness result of weak
solutions on displacement, electric potential and wear fields have been proved but no numerical approximations
have been performed. Here we follow the latter work and propose a numerical scheme for the approximation
of the solution fields so as to elaborate a general numerical analysis of error estimates.

The main goal of this work is to formulate an approximate solution of our problem, which can quickly
converge to the exact solution. For that, this work is organized as follows. In Section 3 we give a short
description of the mathematical model and recall the main existence and uniqueness result. In Section 4, For
the numerical scheme, we prove the existence and uniqueness of the solutions. Finally, in Section 5, we derive
optimal-order error estimates under certain regularity assumptions on the solution of the continuous problem.

2. Notation and preliminaries

In this section we present the notation we shall use and some preliminary material. We denote by Sd the space
of second order symmetric tensors on Rd (d = 2, 3), while ”.” and | . | will represent the inner product and
the Euclidean norm on Sd and Rd. Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ν
denote the unit outer normal on Γ. Everywhere in the sequel the index i and j run from 1 to d, summation over
repeated indices is implied and the index that follows a comma represents the partial derivative with respect to
the corresponding component of the independent spatial variable. We use the standard notation for Lebesgue
and Sobolev spaces associated to Ω and Γ and introduce the spaces:

H =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) / ε(u) ∈ H} ,

H1 = {σ ∈ H / Diυσ ∈ H} .

Here ε and Diυ are the deformation and divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij, j).

A subscript that follows a comma indicates a partial derivative with respect to the corresponding spatial
variable, e.g., ui,j = ∂ui/∂xj .

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the canonical inner products given by

(u,υ)H =

∫
Ω

uiυi dx,

(σ, τ )H =

∫
Ω

σijτij dx,

(u,υ)H1
= (u,υ)H + (ε(u), ε(υ))H,

(σ,τ )H1
= (σ,τ )H + (Diυσ, Diυτ )H .

The associated norms on the spaces H, H, H1 and H1 are denoted by |.|H , |.|H , |.|H1
and |.|H1

, respectively.
For every element υ ∈ H1 we also use the notation υ for the trace of υ on Γ and we denote by υν and υτ the
normal and the tangential components of υ on Γ given by

υν = υ.ν, υτ = υ − υνν. (2.1)

We also denote by σν and στ the normal and the tangential traces of a function σ ∈ H1, we recall that when
σ is a regular function then

σν = (σν).ν, στ = σν − σνν, (2.2)

and the following Green’s formula holds:

(σ, ε(υ))H + (Divσ,υ)H =

∫
Γ

συ.vda ∀υ ∈ H1. (2.3)
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Let T > 0. For every real Banach space X we use the notation C(0, T ;X) and C1(0, T ;X) for the space of
continuous and continuously differentiable functions from [0, T ] to X, respectively. We use dots for derivatives
with respect to the time variable t.

The space C(0, T ;X) is a real Banach space with the norm

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X

while C1(0, T ;X) is a real Banach space with the norm

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

∣∣∣ḟ(t)∣∣∣
X
.

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue spaces Lp(0, T ;X) and for
the Sobolev spaces W k,p(0, T ;X). Moreover, if X1 and X2 are real Hilbert spaces then X1 ×X2 denotes the
product Hilbert space endowed with the canonical inner product (., .)X1×X2

.

3. Statement of the problem

An electro-viscoelastic body with long memory occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with outer
Lipschitz surface Γ. The body is subjected to the action of body forces of density f0 and volume electric charges
of density q0. It is also constrained mechanically and electrically on the boundary. We consider a partition of
Γ into three disjoint measurable subsets Γ1, Γ2 and Γ3, on one hand, and on two disjoint measurable subsets
Γa and Γb, on the other hand, such that meas (Γ1) > 0, meas (Γa) > 0 and Γ3 ⊂ Γb. Let T > 0 and let [0, T ]
be the time interval of interest. The body is clamped on Γ1, so the displacement field vanishes there. Surface
tractions of density f2 act on Γ2. We also assume that the electrical potential vanishes on Γa and a surface
free electrical charge of density q2 is prescribed on Γb. In the reference configuration, the body may come in
contact over Γ3 with a conductive obstacle, which is also called the foundation. The contact is frictional and
is modeled with normal compliance, taking into account the wear of the contact surfaces. The foundation is
assumed to move steadily and only sliding contact takes places. We suppose that the body forces and tractions
vary slowly in time, and therefore, the accelerations in the system may be neglected.

We are interested in the evolution of the deformation of the body and of the electric potential on the
time interval [0, T ]. The process is assumed to be isothermal, electrically static, i.e., all radiation effects
are neglected, and mechanically quasistatic, i.e., the inertial terms in the momentum balance equations are
neglected. To simplify the notation, we do not indicate explicitely the dependence of various functions on the
variables x ∈ Ω∪Γ and t ∈ [0, T ] . Then, the classical formulation of the mechanical problem of sliding frictional
contact problem with normal compliance and wear may be stated as follows.

Problem P. Find a displacement field u : Ω× [0, T ] → Rd, a stress field σ : Ω× [0, T ] → Sd, an electric
potential field φ : Ω × [0, T ] → R, an electric displacement field D : Ω × [0, T ] → Rd and a wear function
ζ : Γ3 × [0, T ] → R such that

σ(t) = Aε(u̇(t)) + F(ε(u(t)) +

∫ t

0

M(t− s)ε(u(s)) ds (3.1)

+E∗∇φ(t) in Ω× (0, T ) ,

D = Eε (u)−B∇φ in Ω× (0, T ) , (3.2)

Diυσ + f0 = 0 in Ω× (0, T ) , (3.3)

diυD = q0 in Ω× (0, T ) , (3.4)

u = 0 on Γ1 × (0, T ) , (3.5)

σν = f2 on Γ2 × (0, T ) , (3.6)
−σν = pν (uν − g − ζ) ,
|στ | = pτ (uν − g − ζ) ,
στ = −λ (u̇τ − υ∗) , λ ≥ 0,

ζ̇ = −k0υ
∗σν ,

on Γ3 × (0, T ) , (3.7)

φ = 0 on Γa × (0, T ) , (3.8)

D.ν = q2 on Γb × (0, T ) , (3.9)

u(0) = u0, ζ(0) = 0 in Ω. (3.10)
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Here, equations (3.1) − (3.2) represent the constitutive law for a piezoelectric material with long memory
where A and F are nonlinear operators describing the purely viscous and the elastic properties of the material,
respectively, and M is a relaxation fourth order tensor. E(φ) = −∇φ is the electric field, E = (eijk) represents
the third order piezoelectric tensor, E∗is its transposed andB denotes the electric permittivity tensor. Equations
(3.3) and (3.4) represent the equilibrium equations for the stress and electric-displacement fields. Equations (3.5)
and (3.6) are the displacement-traction boundary conditions, respectively. (3.7) represents the condition with
normal compliance, friction and wear where g represents the initial gap between the body and the foundation,
k0 > 0 is a wear coefficient and υ∗ is the tangential velocity of the foundation such that υ∗ = |υ∗|. Equations
(3.8) and (3.9) represent the electric boundary conditions. In (3.10) u0 is the given initial displacement and
ζ(0) = 0 means that at the initial moment the body is not subject to any prior wear.

To obtain a variational formulation of the problem (3.1) − (3.10) we introduce the closed subspace of H1

defined by
V = {υ ∈ H1 / υ = 0 on Γ1}.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant ck > 0 which depends only on Ω and
Γ1 such that

|ε(υ|H ≥ ck |υ|H1
∀υ ∈ V.

On the space V we consider the inner product and the associated norm given by

(u,υ)V = (ε(u), ε(υ))H , |υ|V = |ε(υ|H ∀u,υ ∈ V. (3.11)

It follows from Korn’s inequality that |.|H1
and |.|V are equivalent norms on V. Therefore (V, |.|V ) is a real

Hilbert space. Moreover, by the Sobolev’s trace theorem and (3.11), there exists a constant c0 > 0, depending
only on Ω, Γ1 and Γ3 such that

|υ|L2(Γ3)d
≤ c0 |υ|V ∀υ ∈ V. (3.12)

We also introduce the spaces.
W =

{
ϕ ∈ H1(Ω) / ϕ = 0 on Γa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), diυD ∈ L2(Ω)

}
,

where diυD = (Di,i). The spaces W and W are real Hilbert spaces with the inner products given by

(φ, ϕ)W =

∫
Ω

∇φ.∇ϕ dx, (3.13)

(D,E)W =

∫
Ω

D.E dx+

∫
Ω

diυD.diυE dx. (3.14)

The associated norms will be denoted by |.|W and |.|W , respectively. Moreover, when D ∈ W is a regular
function, the following Green’s type formula holds:

(D,∇ϕ)H + (diυD, ϕ)L2(Ω) =

∫
Γ

D.ν ϕda ∀ϕ ∈ H1(Ω).

Notice also that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

|∇ϕ|H ≥ cF |ϕ|H1(Ω) ∀ϕ ∈ W, (3.15)

where cF > 0 is a constant which depends only on Ω and Γa. It fallows from (3.15) that |.|H1(Ω) and |.|W are

equivalent norms on W and therfore (W, |.|W ) is a real Hilbert space. Moreover, by the Sobolev’s trace theorem
and (3.13), there exists a constant a0 > 0, depending only on Ω, Γa and Γ3 such that

|ϕ|L2(Γ3)
≤ a0 |ϕ|W ∀ϕ ∈ W. (3.16)

In the study of the mechanical problem (3.1) − (3.10), we make the following assumptions. Assume that the
operators A, F , E , B and the functions pr (r = ν, τ) satisfy the following conditions with LA, mA, LF , Lr and
mr being positive constants:

(a) A : Ω× Sd → Sd
(b) |A(x, ε1)−A(x, ε2)| ≤ LA |ε1 − ε2|

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) (A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA |ε1 − ε2|2

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x → A(x, ε) is Lebesgue

measurable in Ω for any ε ∈ Sd.
(e) x → A(x,0) ∈ H.

(3.17)
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

(a) F : Ω× Sd → Sd
(b) |F(x, ε1)−F(x, ε2)| ≤ LF |ε1 − ε2|

∀ε1, ε2 ∈ Sd a.e. x ∈ Ω.
(c) The mapping x → F(x, ε) is Lebesgue

measurable on Ω for any ε ∈ Sd.
(d) x → F(x,0) ∈ H.

(3.18)


(a) E : Ω× Sd → Rd

(b) E(x)τ = (ei j k (x)τjk)
∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.

(c) ei jk = eikj ∈ L∞(Ω).

(3.19)



(a) B = (bij) : Ω× Rd → Rd

(b) B(x)E = (bij(x)Ej)
∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji , bij ∈ L∞(Ω).

(d) BE.E ≥ mB |E|2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.20)



(a) pr : Γ3 × R → R+ (r = ν, τ)
(b) |pr(x, α1)− pr(x, α2)| ≤ Lr |α1 − α2|

∀α1, α2 ∈ R, a.e. x ∈ Γ3.
(c) |pr(x, α)| ≤ mr ∀α ∈ R, p.p. x ∈ Γ3,
(d) The mapping x → pr(x, α) is Lebesgue

measurable on Γ3 for any α ∈ R.
(e) x → pr(x, 0) ∈ L2 (Γ3) .

(3.21)

The relaxation tensor M satisfies

M ∈ C(0, T ;H∞), (3.22)

where H∞ is the space of fourth order tensor field given by

H∞ = {E = (Eijkl) / Eijkl = Ejikl = Eklij ∈ L∞ (Ω) , 1 ≤ i, j, k, l ≤ d} ,

which is a real Banach space with the norm

|E|H∞
=

∑
1≤i,j,k,l≤d

|Eijkl|L∞(Ω) .

The density of volume forces, traction, volume electric charges and surface electric charges have the regularity

f0 ∈ C(0, T ;H), f2 ∈ C(0, T ;L2(Γ2)
d), (3.23)

q0 ∈ C(0, T ;L2(Ω)), q2 ∈ C(0, T ;L2(Γb)). (3.24)

q2 = 0 on Γ3 ∀t ∈ [0, T ] . (3.25)

We assume that the gap function g and the initial displacement field u0 satisfy

g ∈ L2(Γ3), g ≥ 0 a.e. x ∈ Γ3. (3.26)

u0 ∈ V. (3.27)

We define the three mappings f : [0, T ] → V , q : [0, T ] → W and j : V × V × L2(Γ3) → R, respectively, by

(f(t),υ)V =

∫
Ω

f0(t).υdx+

∫
Γ2

f2(t).υda, (3.28)

(q(t), ϕ)W =

∫
Ω

q0(t)ϕdx−
∫
Γb

q2(t)ϕda. (3.29)

j(u,υ, ζ ) =

∫
Γ3

pν(uν − g − ζ )υνda (3.30)

+

∫
Γ3

pτ (uν − g − ζ ) |υτ − υ∗| da,
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for all u,υ ∈ V , ζ ∈ L2(Γ3) and t ∈ [0, T ]. The functional j : V × V × L2(Γ3) → R satisfies{
For all u ∈ V and ζ ∈ L2(Γ3), υ → j(u,υ, ζ)
is proper, convex and lower semicontinuous on V.

We note that condition (3.23) and (3.24) imply that

f ∈ C(0, T ;V ), q ∈ C(0, T ;W ). (3.31)

Using standard arguments we obtain the variational formulation of the mechanical problem (3.1)− (3.10).
Problem VP. Find a displacement field u : [0, T ] → V , a stress field σ : [0, T ] → H1, an electric potential

field φ : [0, T ] → W , an electric displacement field D : [0, T ] → W and a wear function ζ : [0, T ] → L2(Γ3)
such that for all t ∈ [0, T ] ,

σ(t) = Aε(u̇(t)) + Fε(u(t)) +

∫ t

0

M(t− s)ε(u(s))ds+ E∗∇φ(t), (3.32)

(σ(t) , ε(υ − u̇(t)))H + j(u(t),υ, ζ(t))− j(u(t), u̇(t), ζ(t)) (3.33)

≥ (f(t),υ − u̇(t))V ∀υ ∈ V,

D(t) = Eε(u(t))−B∇φ(t), (3.34)

(D(t),∇ϕ)H = −(q(t), ϕ)W ∀ϕ ∈ W, (3.35)

ζ̇ = k0υ
∗pν (uν − g − ζ) , (3.36)

u(0) = u0, ζ(0) = 0, (3.37)

The main result in this section is the following existence and uniqueness result (see for details Selmani, 2013).
Theorem 3.1. Assume that (3.17) − (3.27) hold. Then, there exists a unique solution {u,σ,φ,D, ζ} to

Problem VP. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), (3.38)

σ ∈ C(0, T ;H1), (3.39)

φ ∈ C(0, T ;W ), (3.40)

D ∈ C(0, T ;W), (3.41)

ζ ∈ C1(0, T ;L2(Γ3)). (3.42)

4. Fully discrete approximation

In this section, we introduce a discrete numerical scheme of Problem VP. We assume that the conditions
(3.17)− (3.27) hold. Thus, it follows from Theorem 3.1 that Problem VP has a unique solution. More precisely,
we are interested in solving Problem VP over a finite time interval [0, T ], with T > 0 arbitrary but fixed. Thus,
let N be a positive integer; we define the time step size k = T

N and we consider the uniform time discretization
tn = nk, 0 ≤ n ≤ N, where N is a sufficiently large integer. For a continuous function υ(t) with values in a
function space, we write υj = υ(tj), 0 ≤ j ≤ N . For spatial discretization, we consider a polygonal domain Ω.

For the discretization of the integrals, we use the rectangle method∫ tj+1

tj

υ(s)ds = kυj .

Let Hh and Bh be the finite element spaces of piecewise constants. The spaces H and L2 (Γ3) are approximated
by Hh and Bh, respectively.

The V and W spaces are approximated respectively by the following finite element spaces:

V h =
{
υh ∈

[
C
(
Ω
)]d | υh|K ∈ [P1 (K)]

d ∀K ∈ Th, υh = 0 on Γ1

}
,

Wh =
{
ϕh ∈ C

(
Ω
)
| ϕh|K ∈ P1 (K) ∀K ∈ Th, ϕh = 0 on Γa

}
,

where Th is an element derived from the triangularization of Ω, P1 (K) is the space of polynomials of degree
smaller or equal to one on K and h refers to the spatial discretion parameter which is defined as

h = max
K∈Th

diam(K),with diam(K) = max {|x− y| ; x, y ∈ K} .
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For all τ ∈ H, PHhτ is the orthogonal projection of finite elements on Hh,(
PHhτ , τh

)
H =

(
τ , τh

)
H ∀τh ∈ Hh.

It is convenient to introduce the velocity field

υ(t) = u̇(t) so u(t) = u0 +

∫ t

0

υ(s)ds, t ∈ [0, T ] .

It follows from Theorem 3.1 that υ ∈ C(0, T ;V ) and for all t ∈ [0, T ], we have

σ(t) = Aε(υ(t)) + Fε(u(t)) +

∫ t

0

M(t− s)ε(u(s))ds+ E∗∇φ(t), (4.1)

(σ(t) , ε(υ − υ(t)))H + j(u(t),υ, ζ(t))− j(u(t),υ(t), ζ(t)) (4.2)

≥ (f(t),υ − υ(t))V ∀υ ∈ V,

Let uh
0 ∈ V h be a finite element approximation of u0.

The fully discrete approximation of Problem VP is the following.

Problem VPhk. Find a discrete velocity field υhk =
{
υhk
n

}N

n=0
⊂ V h, a discrete stress field σhk ={

σhk
n

}N

n=0
⊂ Hh, a discrete electric potential φhk =

{
φhk
n

}N

n=0
⊂ Wh and a discrete wear field ζhk =

{
ζhkn

}N

n=0

⊂ Bh such that
σh

0 = PHhAε(υh
0 ) + PHhFε(uh

0 ) + PHhE∗∇φh
0 , (4.3)

(σh
0 , ε(υ

h − υh
0 ))H + j(uh

0 ,υ
h, 0)− j(uh

0 ,υ
h
0 , 0) (4.4)

≥ (f (0) ,υh − υh
0 )V ∀υh ∈ V h,

(B∇φh
0 ,∇ϕh)H − (Eε(uh

0 ),∇ϕh)H (4.5)

= (q (0) , ϕh)W ∀ϕh ∈ Wh,

and for n ≥ 1,
σhk

n = PHhAε(υhk
n ) + PHhFε(uhk

n−1) + PHhE∗∇φhk
n (4.6)

+k

n−1∑
j=0

PHh (Rn)
hk
j

(σhk
n , ε(υh − υhk

n ))H + j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) (4.7)

≥ (fn,υ
h − υhk

n )V ∀υh ∈ V h,

(B∇φhk
n ,∇ϕh)H − (Eε(uhk

n−1),∇ϕh)H (4.8)

= (qn, ϕ
h)W ∀ϕh ∈ Wh,

ζhkn = kk0υ
∗
n−1∑
j=0

pν
(
uhk
νj − g − ζhkj

)
. (4.9)

Here, we used the following notations

uhk
0 = uh

0 , υhk
0 = υh

0 , σhk
0 = σh

0 , φhk
0 = φh

0 and ζhk0 = ζh0 = ζ0 = 0.

We use the following discrete displacement field

uhk
n = uh

0 + k

n∑
j=1

υhk
j n ≥ 1, (4.10)

We also use the notations  (Rn)
hk
j = M(tn − tj)ε(u

hk
j ),

(Rn) (s) = M(tn − s)ε(u(s)),
(Rn)j = M(tn − tj)ε(uj).

(4.11)

We have the following existence and uniqueness result.
Theorem 4.1. Suppose that the conditions stated in Theorem 3.1 are satisfied. Then the Problem VPhk

has a unique solution.
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Proof. First,we show that (4.3) − (4.5) uniquely determines σh
0 ∈ Hh, υh

0 ∈ V h and φh
0 ∈ Wh. From

a discrete analogue of Lemma 4.5 in Selmani, 2013, it follows that (4.5) has a unique solution φh
0 ∈ Wh.

Combining (4.3) and (4.4), we obtain an elliptic variational inequality which has a unique solution υh
0 ∈ V h.

σh
0 ∈ Hh is then calculated from (4.3).
Next, we show that with

{(
σhk

j ,υhk
j , φhk

j , ζhkj

)}
j≤n−1

⊂ Hh×V h×Wh×Bh known, (4.6)− (4.9) uniquely

determines
(
σhk

n ,υhk
n , φhk

n , ζhkn

)
⊂ Hh × V h × Wh × Bh. Given

{(
uhk
j , ζhkj

)}
j≤n−1

∈ V h × Bh, a discrete

analogue of Lemma 4.5 in Selmani, 2013 shows that (4.8) has a unique solution φhk
n ∈ Wh and ζhkn ∈ Bh is

computed from (4.9).
Finally, combining (4.6) and (4.7), we obtain

(Aε(υhk
n ) , ε(υh − υhk

n ))H + j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) (4.12)

≥ (rn,υ
h − υhk

n )V ∀υh ∈ V h,

where
(rn,υ

h)V = (fn,υ
h)V −

(
Fε(uhk

n−1) + E∗∇φhk
n (4.13)

+k

n−1∑
j=0

(Rn)
hk
j , ε(υh)


H

.

By a standard result on elliptic variational inequalities, there exists a unique υhk
n ∈ V h satisfying (4.12). We

compute σhk
n from (4.6). □

5. Error estimates

This section is devoted to deriving error estimates for the discrete solution. We make the following solution
regularity assumptions:

(M,u, ζ) ∈ C1(0, T ;H∞ × V × L2(Γ3)), (5.1)

(υ,σ, φ) ∈ C(0, T ;V ×H1 ×W ), (5.2)

(υ,σ, φ) ∈ C(0, T ;H2 (Ω)
d ×H1 (Ω)

d×d ×H2 (Ω)), (5.3)

υ ∈ C
(
0, T ;H2(Γ3)

d
)
,σν ∈ C(0, T ;L2(Γ)d),u0 ∈ H2(Ω)d. (5.4)

In this section, no summation is assumed over a repeated index and c denotes a positive constant which depends
on the problem data, but is independent on the discretization parameters, h and k.

Lemma 5.1. Assume that (3.17) − (3.27) hold. Let {σ,υ,u, φ, ζ} and
{
σhk

n ,υhk
n ,uhk

n , φhk
n , ζhkn

}
denote

the solution to Problems VP and VPhk, respectively. Then, the following error estimates hold for all υh ∈ V h

and ϕh ∈ Wh :

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣
H +

∣∣υn − υhk
n

∣∣
V
+
∣∣un − uhk

n

∣∣
V

+
∣∣φn − φhk

n

∣∣
W

+
∣∣ζn − ζhkn

∣∣
L2(Γ3)

}
(5.5)

≤ ck + c

{∣∣u0 − uh
0

∣∣
V
+ max

0≤n≤N
|(I − PHh)σn|H + max

0≤n≤N
inf

ϕh∈Wh

∣∣φn − ϕh
∣∣
W

+ max
0≤n≤N

inf
υh∈V h

(∣∣υn − υh
∣∣
V
+
∣∣υn − υh

∣∣ 1
2

L2(Γ3)d

)}
.

Proof. First, we make an error estimate on the electric potential. We combine (3.34) and (3.35), we have
for all t ∈ [0, T ] and ϕ ∈ W ,

(B∇φ(t),∇ϕ)H − (Eε(u(t)),∇ϕ)H = (q(t), ϕ)W . (5.6)

Taking (5.6) at t = tn and for all ϕ = ϕh ∈ Wh and n ≥ 1, it follows that

(B∇φn,∇ϕh)H − (Eε(un),∇ϕh)H = (q(t), ϕh)W . (5.7)

We subtract (4.8) from (5.7) to obtain for all ϕh ∈ Wh and n ≥ 1

(B∇φn −B∇φhk
n ,∇ϕh)H − (Eε(un)− Eε(uhk

n−1),∇ϕh)H = 0,

thus
(B∇φn −B∇φhk

n ,∇
(
ϕh − φhk

n

)
)H = (Eε(un)− Eε(uhk

n−1),∇
(
ϕh − φhk

n

)
)H ,
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using the writing ϕh = ϕh + φn − φn, we see that

(B∇φn −B∇φhk
n ,∇

(
φn − φhk

n

)
)H

= (B∇φn −B∇φhk
n ,∇

(
φn − ϕh

)
)H

+(Eε(un)− Eε(uhk
n−1),∇

(
φn − φhk

n

)
)H

−(Eε(un)− Eε(uhk
n−1),∇

(
φn − ϕh

)
)H .

Using (3.20) to see that

mB

∣∣φn − φhk
n

∣∣2
W

≤ (B∇φn −B∇φhk
n ,∇

(
φn − ϕh

)
)H

+(Eε(un)− Eε(uhk
n−1),∇

(
φn − φhk

n

)
)H

−(Eε(un)− Eε(uhk
n−1),∇

(
φn − ϕh

)
)H ,

using the Cauchy-Schwarz inequality and the following inequality

ab ≤ ϵa2 +
1

4ϵ
b2 ∀ϵ > 0, (5.8)

we obtain ∣∣φn − φhk
n

∣∣2
W

≤ c
(∣∣un − uhk

n−1

∣∣2
V
+
∣∣φn − ϕh

∣∣2
W

)
. (5.9)

From (5.6) at t = 0 with ϕ = ϕh ∈ Wh, we have

(B∇φ0,∇ϕh)H − (Eε(u0),∇ϕh)H = (q (0) , ϕh)W ,

We subtract (4.5) from the previous equality to obtain

(B∇φ0 −B∇φh
0 ,∇ϕh)H − (Eε(u0)− Eε(uh

0 ),∇ϕh)H = 0,

then, we can write

(B∇φ0 −B∇φh
0 ,∇

(
ϕh − φh

0

)
)H = (Eε(u0)− Eε(uh

0 ),∇
(
ϕh − φh

0

)
)H .

We use the writing ϕh = ϕh − φ0 + φ0 to note

(B∇φ0 −B∇φh
0 ,∇

(
φ0 − φh

0

)
)H

= (B∇φ0 −B∇φh
0 ,∇

(
φ0 − ϕh

)
)H

+(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − φh

0

)
)H

−(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − ϕh

)
)H .

By using (3.20) to see that

mB

∣∣φ0 − φh
0

∣∣2
W

≤ (B∇φ0 −B∇φh
0 ,∇

(
φ0 − ϕh

)
)H

+(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − φh

0

)
)H

−(Eε(u0)− Eε(uh
0 ),∇

(
φ0 − ϕh

)
)H ,

Using the inequality of Cauchy-Schwarz, (3.19)− (3.20) and (5.8), we find∣∣φ0 − φh
0

∣∣2
W

≤ c
(∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − ϕh

∣∣2
W

)
. (5.10)

Next, we state two relations that we will use in error estimations ( see Sofonea et al., 2005 )

∣∣un − uhk
n

∣∣2
V
≤ ck2 +

∣∣u0 − uh
0

∣∣2
V
+ ck

n∑
j=1

∣∣υj − υhk
j

∣∣2
V
, (5.11)

∣∣un − uhk
n−1

∣∣2
V
≤ ck2 +

∣∣u0 − uh
0

∣∣2
V
+ ck

n−1∑
j=0

∣∣υj − υhk
j

∣∣2
V
. (5.12)
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We note for all n ≥ 1

θhkn (Rn) =

∫ tn

0

(Rn) (s)ds−
n−1∑
j=0

k (Rn)
hk
j

=

n−1∑
j=0

∫ tj+1

tj

[
(Rn) (s)− (Rn)j

]
ds

+

n−1∑
j=0

k
[
(Rn)j − (Rn)

hk
j

]
,

then
θhkn (Rn) = In + Ihkn , (5.13)

where

In =

n−1∑
j=0

∫ tj+1

tj

[
(Rn) (s)− (Rn)j

]
ds, Ihkn =

n−1∑
j=0

k
[
(Rn)j − (Rn)

hk
j

]
.

We have

In =

n−1∑
j=0

∫ tj+1

tj

[M(tn − s)ε(u(s))−M(tn − tj)ε(uj)] ds

=

n−1∑
j=0

∫ tj+1

tj

[M(tn − s)ε(u(s))−M(tn − s)ε(uj)] ds

+

n−1∑
j=0

∫ tj+1

tj

[M(tn − s)−M(tn − tj)] ε(uj)ds.

We use the hypothesis (3.22), we obtain

|In|H ≤ c

n−1∑
j=0

∫ tj+1

tj

[
|u (s)− uj |V + |M(tn − s)−M(tn − tj)|H∞

]
ds.

Using (5.1), the sum can be bounded by ck where the constant c is proportional to |u̇|C(0,T ;V )+
∣∣∣Ṁ∣∣∣

C(0,T ;H∞)
.

Hence
|In|2H ≤ ck2. (5.14)

We also have

Ihkn =

n−1∑
j=0

k
[
M(tn − tj)ε(uj)−M(tn − tj)ε(u

hk
j )

]
,

From (3.22) and (3.11), we find ∣∣Ihkn

∣∣
H ≤ ck

n−1∑
j=0

∣∣uj − uhk
j

∣∣
V
. (5.15)

We combine (5.13)− (5.14) and (5.15) to see that

∣∣θhkn (Rn)
∣∣2
H ≤ ck2 + ck

n−1∑
j=0

∣∣uj − uhk
j

∣∣2
V
. (5.16)

Furthermore, we apply (4.1) at t = tn to see that

σn = Aε(υn) + Fε(un) +

∫ tn

0

M(tn − s)ε (u(s)) ds+ E∗∇φn. (5.17)

Using (4.6) and (5.17), we can write for all n ≥ 1

σn − σhk
n = (I − PHh)σn + PHhσn − σhk

n

= (I − PHh)σn + PHh

[(
Aε(υn)−Aε(υhk

n )
)
+

(
Fε(un)−Fε(uhk

n−1)
)
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+
(
E∗∇φn − E∗∇φhk

n

)
+ θhkn (Rn)

]
.

Here, we used the symbol I for the identity application on H. using the hypotheses on operators A , F and E ,
as well as inequality |PHhτ |H ≤ |τ |H, we have∣∣σn − σhk

n

∣∣2
H ≤ c

[
|(I − PHh)σn|2H +

∣∣υn − υhk
n

∣∣2
V

]
(5.18)

+c
[∣∣un − uhk

n−1

∣∣2
V
+

∣∣φn − φhk
n

∣∣2
W

+
∣∣θhkn (Rn)

∣∣2
H

]
.

For n = 0, using (4.1) at t = 0 and (4.3), we have

σ0 − σh
0 = (I − PHh)σ0 + PHhσ0 − σh

0

= (I − PHh)σ0 + PHh

[(
Aε(υ0)−Aε(υh

0 )
)
+

(
Fε(u0)−Fε(uh

0 )
)

+
(
E∗∇φ0 − E∗∇φh

0

)]
.

Using (3.17)− (3.19) we find ∣∣σ0 − σh
0

∣∣2
H ≤ c

[
|(I − PHh)σ0|2H +

∣∣υ0 − υh
0

∣∣2
V

]
. (5.19)

+c
[∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

]
We combine (4.1) and (4.2), taking t = tn for all υ ∈ V and n ≥ 1, we obtain(

Aε(υn) + Fε(un) +

∫ tn

0

(Rn) (s)ds+ E∗∇φn, ε(υ − υn)

)
H

(5.20)

+j(un,υ, ζn)− j(un,υn, ζn) ≥ (fn,υ − υn)V .

By combining (4.6) and (4.7) to write for all υh ∈ V h and n ≥ 1

(Aε(υhk
n ) + Fε(uhk

n−1) + E∗∇φhk
n + k

n−1∑
j=0

(Rn)
hk
j , ε(υh − υhk

n ))H (5.21)

+j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υ

hk
n , ζhkn ) ≥ (fn,υ

h − υhk
n )V .

From (3.17) the hypothesis on A, we have for all n ≥ 1

mA
∣∣υn − υhk

n

∣∣2
V

≤ (Aε(υn)−Aε(υhk
n ), ε(υn − υhk

n ))H

= (Aε(υn), ε(υn − υhk
n ))H

−(Aε(υhk
n ), ε(υn − υh))H

+(Aε(υhk
n ), ε(υhk

n − υh))H.

We use (5.20) with υ = υhk
n to estimate the first term and (5.21) to estimate the third term, we add (σn, ε(υn−

υh))H − (σn, ε(υn − υh))H to the second side, after some elementary algebraic operations, we obtain

mA
∣∣υn − υhk

n

∣∣2
V

(5.22)

≤ (Aε(υn)−Aε(υhk
n ), ε(υn − υh))H +

(
Fε(un)−Fε(uhk

n−1) + θhkn (Rn)

+E∗∇φn − E∗∇φhk
n , ε(υn − υh)

)
H −

(
Fε(un)−Fε(uhk

n−1) + θhkn (Rn)

+E∗∇φn − E∗∇φhk
n , ε(υn − υhk

n )
)
H + j(uhk

n−1,υ
h, ζhkn )− j(uhk

n−1,υn, ζ
hk
n )

+j(un,υ
hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn ) +R1,n

(
υh

)
,

where
R1,n

(
υh

)
= −(σn, ε(υn − υh))H + (fn,υn − υh)V . (5.23)

From (3.30) the definition of j, we have for all n ≥ 1∣∣j(un,υ
hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn )

∣∣
=

∣∣∣∣∫
Γ3

pν(unν − g − ζn )υhk
nνda+

∫
Γ3

pτ (unν − g − ζn )
∣∣υhk

nτ − υ∗∣∣ da
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−
∫
Γ3

pν(unν − g − ζn )υnνda−
∫
Γ3

pτ (unν − g − ζn ) |υnτ − υ∗| da

+

∫
Γ3

pν(u
hk
n−1ν − g − ζhkn )υnνda+

∫
Γ3

pτ (u
hk
n−1ν − g − ζhkn ) |υnτ − υ∗| da

−
∫
Γ3

pν(u
hk
n−1ν − g − ζhkn )υhk

nνda−
∫
Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υhk
nτ − υ∗∣∣ da∣∣∣∣

=

∣∣∣∣∫
Γ3

[
pν(unν − g − ζn )− pν(u

hk
n−1ν − g − ζhkn )

] [
υhk
nν − υnν

]
da

+

∫
Γ3

[
pτ (unν − g − ζn )− pτ (u

hk
n−1ν − g − ζhkn )

] [∣∣υhk
nτ − υ∗∣∣− |υnτ − υ∗|

]
da

∣∣∣∣
≤

∫
Γ3

∣∣pν(unν − g − ζn )− pν(u
hk
n−1ν − g − ζhkn )

∣∣ ∣∣υhk
nν − υnν

∣∣ da
+

∫
Γ3

∣∣pτ (unν − g − ζn )− pτ (u
hk
n−1ν − g − ζhkn )

∣∣ ∣∣υhk
nτ − υnτ

∣∣ da.
From (3.21) and inequality (3.12) with the inequality |ur| ≤ |u| (r = ν, τ) ∀u ∈ Rd, we find for all n ≥ 1∣∣j(un,υ

hk
n , ζn)− j(un,υn, ζn) + j(uhk

n−1,υn, ζ
hk
n )− j(uhk

n−1,υ
hk
n , ζhkn )

∣∣ (5.24)

≤ (Lν + Lτ ) c
2
0

∣∣un − uhk
n−1

∣∣
V

∣∣υn − υhk
n

∣∣
V

+(Lν + Lτ ) c0
∣∣ζn − ζhkn

∣∣
L2(Γ3)

∣∣υn − υhk
n

∣∣
V
.

Similarly, we have for all n ≥ 1 ∣∣j(uhk
n−1,υ

h, ζhkn )− j(uhk
n−1,υn, ζ

hk
n )

∣∣
=

∣∣∣∣∫
Γ3

pν(u
hk
n−1ν − g − ζhkn )υh

νda+

∫
Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υh
τ − υ∗∣∣ da

−
∫
Γ3

pν(u
hk
n−1ν − g − ζhkn )υnνda−

∫
Γ3

pτ (u
hk
n−1ν − g − ζhkn ) |υnτ − υ∗| da

∣∣∣∣
≤

∫
Γ3

pν(u
hk
n−1ν − g − ζhkn )

∣∣υh
ν − υnν

∣∣ da+

∫
Γ3

pτ (u
hk
n−1ν − g − ζhkn )

∣∣υh
τ − υnτ

∣∣ da
Using (3.21) and (3.12) to deduce that∣∣j(uhk

n−1,υ
h, ζhkn )− j(uhk

n−1,υn, ζ
hk
n )

∣∣ ≤ (mν +mτ ) c0
∣∣υn − υh

∣∣2
V
. (5.25)

We substitute (5.24) − (5.25) into (5.22) and using the assumptions on A, F , M and E , the Cauchy-Schwarz
inequality and (5.8), we obtain for all n ≥ 1∣∣υn − υhk

n

∣∣2
V
≤ c

(∣∣un − uhk
n−1

∣∣2
V
+
∣∣φn − φhk

n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

)
(5.26)

+c
(∣∣υn − υh

∣∣2
V
+
∣∣θhkn (Rn)

∣∣2
H

)
+

∣∣R1,n

(
υh

)∣∣ .
Similarly, we apply (4.1)− (4.2) at t = 0 with the initial condition ζ (0) = 0, for all υ ∈ V , we find

(Aε(υ0) + Fε(u0) + E∗∇φ0, ε(υ − υ0))H (5.27)

+j(u0,υ, 0)− j(u0,υ0, 0) ≥ (f (0) ,υ − υ0)V .

Using (4.3)− (4.4) with ζh0 = 0 to see that for all υh ∈ V h

(Aε(υh
0 ) + Fε(uh

0 ) + E∗∇φh
0 , ε(υ

h − υh
0 ))H (5.28)

+j(uh
0 ,υ

h, 0)− j(uh
0 ,υ

h
0 , 0) ≥ (f (0) ,υh − υh

0 )V .

We use (3.17), we have

mA
∣∣υ0 − υh

0

∣∣2
V

≤ (Aε(υ0)−Aε(υh
0 ), ε(υ0 − υhk

0 ))H

= (Aε(υ0), ε(υ0 − υh
0 ))H

−(Aε(υh
0 ), ε(υ0 − υh))H

+(Aε(υh
0 ), ε(υ

h
0 − υh))H.
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Using (5.27) with υ = υh
0 to estimate the first term and (5.27) to estimate the third term, and adding

(σ0, ε(υ0 − υh))H − (σ0, ε(υ0 − υh))H to the second side, we obtain

mA
∣∣υ0 − υh

0

∣∣2
V

(5.29)

≤ (Aε(υ0)−Aε(υh
0 ), ε(υ0 − υh))H +

(
Fε(u0)−Fε(uhk

0 )

+E∗∇φ0 − E∗∇φh
0 , ε(υ0 − υh)

)
H −

(
Fε(u0)−Fε(uh

0 )

+E∗∇φ0 − E∗∇φhk
0 , ε(υ0 − υh

0 )
)
H + j(uh

0 ,υ
h, 0)− j(uh

0 ,υ0, 0)

+j(u0,υ
h
0 , 0)− j(u0,υ0, 0) + j(uh

0 ,υ0, 0)− j(uh
0 ,υ

h
0 , 0) +R1,0

(
υh

)
.

From (3.21) and by the same argument that we used in (5.24), we find∣∣j(u0,υ
h
0 , 0)− j(u0,υ0, 0) + j(uh

0 ,υ0, 0)− j(uh
0 ,υ

h
0 , 0)

∣∣ (5.30)

≤ (Lν + Lτ ) c
2
0

∣∣u0 − uh
0

∣∣
V

∣∣υ0 − υh
0

∣∣
V
.

Similarly, using a similar argument that we used in (5.25) to see that∣∣j(uh
0 ,υ

h, 0)− j(uh
0 ,υ0, 0)

∣∣ ≤ (mν +mτ ) c0
∣∣υ0 − υh

∣∣2
V
. (5.31)

We substitute (5.30) − (5.31) into (5.29) and using (3.17) − (3.19), the Cauchy-Schwarz inequality and (5.8),
we obtain ∣∣υ0 − υh

0

∣∣2
V
≤ c

(∣∣u0 − uh
0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

+
∣∣υ0 − υh

∣∣2
V

)
+
∣∣R1,0

(
υh

)∣∣ . (5.32)

Combining (5.10) and (5.19) with (5.32), it is easy to see that∣∣σ0 − σh
0

∣∣2
H +

∣∣υ0 − υh
0

∣∣2
V
+

∣∣u0 − uh
0

∣∣2
V
+
∣∣φ0 − φh

0

∣∣2
W

(5.33)

≤ c
(∣∣u0 − uh

0

∣∣2
V
+
∣∣φ0 − ϕh

∣∣2
W

+
∣∣υ0 − υh

∣∣2
V
+ |(I − PHh)σ0|2H

)
+

∣∣R1,0

(
υh

)∣∣ .
On the other hand, for the wear function, we use (3.36) at t = tn, and ζ (0) = 0, we obtain for all n ≥ 1

ζn = k0υ
∗
∫ tn

0

pν (uν (s)− g − ζ (s)) ds, (5.34)

we subtract (4.9) from (5.34) to see that

ζn − ζhkn = k0υ
∗

n−1∑
j=0

∫ tj+1

tj

(
pν (uν (s)− g − ζ (s))− pν

(
uhk
νj − g − ζhkj

))
ds

 ,

using (3.21), the inequality |uν | ≤ |u| ∀u ∈ Rd and (3.12), we obtain

∣∣ζn − ζhkn

∣∣
L2(Γ3)

≤ c

n−1∑
j=0

∫ tj+1

tj

[∣∣uν (s)− uhk
νj

∣∣
L2(Γ3)

+
∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds

≤ c

n−1∑
j=0

∫ tj+1

tj

[∣∣u (s)− uhk
j

∣∣
L2(Γ3)d

+
∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds

≤ c

n−1∑
j=0

∫ tj+1

tj

[∣∣u (s)− uhk
j

∣∣
V
+

∣∣ζ (s)− ζhkj

∣∣
L2(Γ3)

]
ds,

therefore

∣∣ζn − ζhkn

∣∣
L2(Γ3)

≤ c

n−1∑
j=0

∫ tj+1

tj

[
|u (s)− uj |V + |ζ (s)− ζj |L2(Γ3)

]
ds

+ck

n−1∑
j=0

[∣∣uj − uhk
j

∣∣
V
+
∣∣ζj − ζhkj

∣∣
L2(Γ3)

]
,
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using (5.1), the first sum can be bounded by ck where the constant c is proportional to |u̇|C(0,T ;V )+
∣∣∣ζ̇∣∣∣

C(0,T ;L2(Γ3))
.

Thus ∣∣ζn − ζhkn

∣∣2
L2(Γ3)

≤ ck2 + ck

n−1∑
j=0

∣∣uj − uhk
j

∣∣2
V
+ ck

n−1∑
j=0

∣∣ζj − ζhkj

∣∣2
L2(Γ3)

(5.35)

By adding (5.9), (5.11)− (5.12), (5.16), (5.18), (5.26) and (5.35) to obtain for all n ≥ 1∣∣σn − σhk
n

∣∣2
H +

∣∣υn − υhk
n

∣∣2
V
+
∣∣un − uhk

n

∣∣2
V
+

∣∣φn − φhk
n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

≤ ck2 + c
∣∣u0 − uh

0

∣∣2
V
+ c

[
|(I − PHh)σn|2H +

∣∣φn − ϕh
∣∣2
W

+
∣∣υn − υh

∣∣2
V

]
+
∣∣R1,n

(
υh

)∣∣+ ck

n−1∑
j=0

{∣∣σj − σhk
j

∣∣2
H +

∣∣υj − υhk
j

∣∣2
V
+
∣∣uj − uhk

j

∣∣2
V

+
∣∣φj − φhk

j

∣∣2
W

+
∣∣ζj − ζhkj

∣∣2
L2(Γ3)

}
.

From this inegality and (5.33), applying Gronwall’s Lemma (see for example Sofonea et al., 2012 ) to see that

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣2
H +

∣∣υn − υhk
n

∣∣2
V
+

∣∣un − uhk
n

∣∣2
V

+
∣∣φn − φhk

n

∣∣2
W

+
∣∣ζn − ζhkn

∣∣2
L2(Γ3)

}
(5.36)

≤ ck2 + c
∣∣u0 − uh

0

∣∣2
V
+ c max

0≤n≤N

{
|(I − PHh)σn|2H + inf

ϕh∈Wh

∣∣φn − ϕh
∣∣2
W

+ inf
υh∈V h

[∣∣υn − υh
∣∣2
V
+
∣∣R1,n

(
υh

)∣∣]} .

To find a bound of R1,n

(
υh

)
defined in (5.23), we integrate by parts the first term to obtain

R1,n

(
υh

)
=

∫
Ω

Diυσn.
(
υn − υh

)
dx−

∫
Γ

(σν)n
(
υn − υh

)
da

+(fn,υn − υh)V .

Using (3.28) and we apply (3.3) and (3.6) at t = tn to see that for all n ≥ 0

R1,n

(
υh

)
= −

∫
Ω

f0n.
(
υn − υh

)
dx−

∫
Γ2

f2n

(
υn − υh

)
da

−
∫
Γ3

(σν)n
(
υn − υh

)
da+

∫
Ω

f0n.
(
υn − υh

)
dx

+

∫
Γ2

f2n

(
υn − υh

)
da

= −
∫
Γ3

(σν)n
(
υn − υh

)
da,

using the Cauchy-Schwarz inequality we see that∣∣R1,n

(
υh

)∣∣ ≤ |(σν)n|L2(Γ3)d

∣∣υn − υh
∣∣
L2(Γ3)d

.

From (5.4) we deduce that ∣∣R1,n

(
υh

)∣∣ ≤ c
∣∣υn − υh

∣∣
L2(Γ3)d

,

Combining the previous estimate with (5.36), we find (5.5).□
Theorem 5.2. Suppose that k is sufficiently small. Then, under the regularity assumptions (5.1)− (5.4),

we have the following error estimate

max
0≤n≤N

{ ∣∣σn − σhk
n

∣∣
H +

∣∣υn − υhk
n

∣∣
V
+
∣∣un − uhk

n

∣∣
V

+
∣∣φn − φhk

n

∣∣
W

+
∣∣ζn − ζhkn

∣∣
L2(Γ3)

}
≤ c (h+ k) . (5.37)

Proof. Under assumptions (5.3) and (5.4), we can apply the standard theory of finite element interpolation
(see for example Braess, 2007 and Sofonea et al., 2005) to see that∣∣u0 − uh

0

∣∣
V
≤ ch |u0|H2(Ω)d ,
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max
0≤n≤N

|σn − PHhσn|H ≤ ch |σ|C(0,T ;H1(Ω)d×d) ,

max
0≤n≤N

inf
υh∈V h

∣∣υn − υh
∣∣
V
≤ ch |υ|C(0,T ;H2(Ω)d) ,

max
0≤n≤N

inf
υh∈V h

∣∣υn − υh
∣∣
L2(Γ3)d

≤ ch2 |υ|C(0,T ;H2(Γ3)d)
,

max
0≤n≤N

inf
ϕh∈Wh

∣∣φn − ϕh
∣∣
W

≤ ch |φ|C(0,T ;H2(Ω)) .

Combining the previous estimates and (5.5) it leads to (5.37).□

6. Conclusion

This paper presents a model of the quasistatic contact process between an electro-viscoelastic body and a
foundation. The contact was modeled by normal compliance with wear. The proof of the existence of a unique
weak solution to the model has been obtained by using arguments on elliptic variational inequalities. A fully
discrete scheme is used to approach the problem and an optimal order error estimate. A numerical algorithm
which combines the backward Euler difference method with the finite elements method. Finally, it may be
interesting to incorporate control mechanisms into the model and study the related optimal control problem.
Also, the problem is relatively easy to set experimentally, and it may provide an effective way to determine
some of the constants associated with the contact process, to be used in more complex physical settings.
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