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Erratum: Moderate Deviations Principle and
Central Limit Theorem for Stochastic

Cahn-Hilliard Equation in Hölder Norm.

Ratsarasaina R. M.1 and Rabeherimanana T.J.2

ABSTRACT: We consider a stochastic Cahn-Hilliard partial differential equation driven by a space-time white noise. In this paper, we

prove a Central Limit Theorem (CLT) and a Moderate Deviation Principle (MDP) for a perturbed stochastic Cahn-Hilliard equation in

Hölder norm. The techniques are based on Freidlin-Wentzell’s Large Deviations Principle. The exponential estimates in the space of

Hölder continuous functions and the Garsia-Rodemich-Rumsey’s lemma plays an important role, an another approach than the Li.R.

and Wang.X. Finally, we estabish the CLT and MDP for stochastic Cahn-Hilliard equation with uniformly Lipschitzian coefficients.
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equation, Green’s function, Freidlin-Wentzell’s method.
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1 INTRODUCTION AND PRELIMINARIES.
The Cahn-Hilliard equation was developed in 1958 to model the phase separation process of a binary
mixture (Cahn J.W. and Hilliard J.E. [3,4]). This approach has been extended to many other branches of
science as dissimilar as polymer systems, population growth, image processing, spinodal decomposition,
among others.

Consider the process {Xε(t, x)}ε>0 solution of stochastic Cahn-Hilliard with multipicative space time
white noise, indexed by ε > 0, given by

∂tX
ε(t, x) = −∆(∆Xε(t, x)− f(Xε(t, x))) +

√
εσ(Xε(t, x))Ẇ (t, x),

in (t, x) ∈ [0, T ]×D,

Xε(0, x) = X0(x), (1.1)

∂Xε(t,x)
∂µ = ∂∆Xε(t,x)

∂µ = 0, on (t, x) ∈ [0, T ]× ∂D.

where T > 0, D = [0, π]3, ∆Xε(t, x) denotes the Laplacian of Xε(t, x) in the x-variable, µ is the outward
normal vector, f is a polynomial of degree 3 with positive dominant coefficient such as f = F

′
where
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F (u) = (1 − u2)2, W is a space-time of a Brownian sheet defined on some filtered probability space
(Ω,F , (Ft)t≥0,P) and Ẇ = ∂2W

∂t∂x is the formal derivative of a Brownian sheet W defined on probability
space (Ω,F ,P). The coefficients f , σ are uniform Lipschitz with respect to x, with at most linear growth.
More precisely, we suppose that there exists two constants Kf and Kσ such that ∀x, y ∈ R, |f(x)− f(y)| ≤ Kf |x− y|

(1.2)
|σ(x)− σ(y)| ≤ Kσ|x− y|

and that there exists a constant K > 0 such that :

sup{|f(x)|+|σ(x)|} ≤ K(1+|x|). (1.3)

Let X0 be the solution of the determinic Cahn-Hilliard equation

∂tX
0(t, x) = −∆(∆X0(t, x)− f(X0(t, x)))

with initial condition X0(0, x) = X0(x). We expect that ||Xε −X0||α → 0 in probability as ε → 0+ where
||.||α is the Hölder norm (see (2.1)). The LDP, CLT and MDP for stochastic Cahn-Hilliard equation are not
new. For example, Boulanba.L. and Mellouk.M. [2] studied the LDP for the mild solution of Stochastic
Cahn-Hilliard equation (1.1). Li.R. and Wang.X. [8] studied the CLT and MDP for stochastic perturbed
Cahn-Hilliard equation using the weak convergence approach.

However, we study its CLT and MDP for stochastic Cahn-Hilliard equation in the context of Hölder
norm using another method. It means, we study the process

ηε(t, x) =

(
Xε −X0

√
ε

)
(t, x) (1.4)

and

θε(t, x) =

(
Xε −X0

√
εh(ε)

)
(t, x) (1.5)

in order to get a CLT and a MDP respectively.
The techniques are based on the exponential estimates in the space of Hölder continuous functions. The
Garsia-Rodemich-Rumsey’s lemma plays a very important role.
The paper is organized as follows : in the section one, we prove that ηε(t, x) defined by (1.4) converges in
probability to η0(t, x). More precisely we purpose to prove that limε→0 E||ηε− η0||rα = 0. In the section two,
we study the LDP for (1.4) as ε → 0 for 1 < h(ε) < 1√

ε
, that is to say , the process θε(t, x) defined by (1.5)

obeys a LDP on Cα([0, 1] ×D) with speed h2(ε) and with rate function Ĩ(.) defined later. In section three,
we prove the main results. Finally the example for CLT and MDP for stochastic Cahn-Hilliard equation
with uniformly Lipschitzian coefficients be given in section four.

2 MAIN RESULTS

Let H denote the Cameron-Martin space associated with the Brownian sheet
{
W (t, x), t ∈ [0, T ], x ∈ D

}
,

that is to say,

H =

{
h(t) =

∫ t

0

∫
D

|ḣ(t, x)|2dtdx : ḣ ∈ L2
(
[0, T ]×D

)}
.

Let E0, E be polish space such that the initial condition X0(x) takes valued in a compact subspace of E0
and Θε =

{
Gε : E0 × C

(
[0, T ]×D,R

)
→ E , ε > 0

}
a family of measurable maps valued in E .

For X0 ∈ E0, define Xε,X0 = Gε
(
X0,

√
εW

)
and for n0 ∈ N, consider the following Sn0 = {Ψ ∈ L2([0, T ] ×

D) :
∫ T
0

∫
D Ψ2(s, y)dsdy ≤ n0} which is a compact metric space, equipped with the weak topology on

L2([0, T ]×D).
We denote ||.||α the α-hölder norm such that

||F ||α = ||F ||∞+|F |α (2.1)
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where

||F ||∞ = sup
{∣∣F (s, x)

∣∣ : (s, x) ∈ [0, T ]×D
}
,

|F |α = sup

{
|F (s1, x1)− F (s2, x2)|
(|s1 − s2|+ |x1 − x2|2)α

: (s1, x1), (s2, x2) ∈ [0, T ]×D

}
.

Let Cα([0, T ]×D) the space of function F : [0, T ]×D −→ R such that ||F ||α < +∞ .
Schilder’s theorem for the Brownian sheet asserts that the family{√

εW (t, x) : ε > 0
}

satisfies a LDP on Cα([0, T ]×D), with the good rate function I(.) defined by

I(h) =

{
1
2

∫ T
0

∫
D |ḣ(t, x)|2dtdx for h ∈ H

+∞ otherwise,

For h ∈ H, let Xh
X0

be the solution of the following deterministic partial differential equation

∂tX
h
X0

(t, x) = −∆(∆Xh
X0

(t, x)− f(Xh
X0

(t, x))) + σ(Xh
X0

(t, x))ḣ(t, x)

with initial condition
Xh

X0
(0, x) = X0(x).

Theorem 1([2]): Let σ be continuous on R, f and σ satisfy conditions (1.2) and (1.3). Then, the law of Xε
X0

satisfies the LDP on Cα([0, T ]×D) with a good rate fuction ĨX0(.) defined by

ĨX0(Φ) = inf{
ḣ∈L2([0,T ]×D) : Φ=G0(X0,I(h))

}{1

2

∫ T

0

∫
D

ḣ2(s, y)dsdy

}
and +∞ otherwise.
See also for example [1,7].
In addition to (1.2) and (1.3), the coefficient f is differentiable with respect to x and the derivative f

′
is

also uniformly Lipschitz. More precisely, there exists a constante C such that

|f ′
(x)−f

′
(y)| ≤ C|x−y| (2.2)

for all x, y ∈ R.
Combined with the uniform Lipschitz continuity of f , we have

|f ′
(x)| ≤ Kf . (2.3)

2.1 Central Limit Theorem
In this section, our first main result is the following theorem :

Theorem 2: Suppose that f , f ′ and σ satisfy conditions (1.2), (1.3), (2.2) and (2.3). Then for any α ∈ [0; 14),
r ≥ 1, the process ηε(t, x) defined by (1.4) converges in Lr to the random process η0(t, x) as ε → 0 where η0(t, x)
verifies the stochastic partial differential equation

∂tη
0(t, x) = −∆(∆η0(t, x)− f

′
(X0(t, x))η0(t, x)) + σ(X0(t, x))Ẇ (t, x)

with initial condition η0(0, x) = 0.

Let S(t) = e−A2t be the semi-group generated by the operator A2u :=
∑∞

i=0 e
−µ2

i tuiwi where u :=∑∞
i=0 uiwi. Then the convolution semi-group (see Cardon-Weber.C [5]) is defined by S(t)U(x) =∑∞
i=0 e

−µ2
i twi(x)wi(y) for any U(x) in L2(D), with the associated Green’s function Gt such that Gt(x, y) =∑∞

i=0 e
−µ2

i twi(x)wi(y). Lemma 1: There exists positive constants C, γ and γ
′ satisfying γ < 4 − d, γ ≤ 2 and

γ
′
< 1− d

4 such that for all y, z ∈ D, 0 ≤ s < t ≤ T and 0 ≤ h ≤ t, we have :

1.
∫ t
0

∫
D |Gr(x, y)−Gr(x, z)|2dxdr ≤ C|y − z|γ ,

2.
∫ t
0

∫
D |Gr+h(x, y)−Gr(x, y)|2dxdr ≤ C|h|γ

′
,



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 50

3.
∫ t
0

∫
D |Gr(x, y)|2dxdr ≤ C|t− s|γ ,

4. supt∈[0,T ]

∫ t
0

∫
D |Gt−u(x, z)−Gt−u(y, z)|pdudz ≤ C|x− y|3−p , p ∈]32 , 3[,

5. supx∈D
∫ s
0

∫
D |Gt−u(x, z)−Gs−u(x, z)|pdudz ≤ C|t− s|

(3−p)
2 , p ∈]1, 3[,

6. supx∈D
∫ s
t

∫
D |Gu(x, z)|pdudz ≤ C|t− s|

(3−p)
2 , p ∈]1, 3[.

2.2 Moderate Deviations Principle
In this paper, our second main result is the MDP for the Stochastic Cahn-Hilliard equation. More precisely,
we assume that the process {θε(t, x)}ε>0 defined by (1.5) obeys a LDP on the space Cα([0, 1] × D), with
speed h2(ε) and rate function ĨX0(.).

Proposition 1: If f and σ are Lipschitzian, then there exists C(p,K,Kf ,
T,X0) depending on p, K, Kf , T , X0 such that

E
(
||Xε −X0||∞

)p ≤ ε
p
2C(p,K,Kf , T,X0) −→ 0 as ε → 0.

Theorem 3: Let σ be continuous on R and f , f ′ , σ satisfy the conditions (1.2), (1.3), (2.2) and (2.3).Then,
the process {θε(t, x)}ε>0 defined by (1.5) obeys a LDP on the space Cα([0, 1] × D), with speed h2(ε) and rate
function ĨX0(.) such that:

ĨX0(ϕ) = inf
{ḣ∈L2([0,T ]×D) : ϕ=G0(X0,I(h))}

{
1

2

∫ T

0

∫
D

ḣ2(s, y)dyds

}
and +∞ otherwise.

3 PROOF OF MAIN RESULTS

Proof of proposition 1: In Boulanba and Mellouk [2], we know that the stochastic Cahn-Hilliard equation
has a solution {Xε(t, x)}ε>0 such that

Xε(t, x) =

∫
D

Gt(x, y)X0(y)dy +

∫ t

0

∫
D

∆Gt−s(x, y)f(X
ε(s, y))dsdy

+
√
ε

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy).

and that ||Xε −X0||α → 0 in probability as ε → 0+ where X0 is the solution of

X0(t, x) =

∫
D

Gt(x, y)X0(y)dy +

∫ t

0

∫
D

∆Gt−s(x, y)f(X
0(s, y))dsdy.

Then we have (
Xε −X0

)
(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)
[
f(Xε(s, y))− f(X0(s, y))

]
dsdy

+
√
ε

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy).

Using the inequality (a+ b)p ≤ 2p−1(ap + bp), we have(
||Xε −X0||∞

)p ≤ 2p−1

([
sup

0≤s≤T

x∈D

∣∣∣∣ ∫ t

0

∫
D

∆Gt−s(x, y)[f(X
ε(s, y))

− f(X0(s, y))]dsdy

∣∣∣∣]p
+ ε

p
2

[
sup

0≤s≤T

x∈D

∣∣∣∣ ∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy)

∣∣∣∣]p).



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 51

Denote

αε
1(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)[f(X
ε(s, y))− f(X0(s, y))]dsdy,

αε
2(t, x) =

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy).

From (1.2), (1.3) and Hölder inequality, for p > 2,

E
(
||αε

1||T∞
)p ≤ Kp

f

(
sup

0≤s≤T

x∈D

∣∣∣∣ ∫ t

0

∫
D

∆Gq
t (x, y)dsdy

∣∣∣∣) p
q

E
∫ T

0

|Xε
X0

−X0
X0

|pdt

where 1
p + 1

q = 1.

For any p > 2 and q
′ ∈ (1, 32) such that γ := (3 − 2q

′
)p/(4q

′
) − 2 > 0, and for any x, y ∈ D , t ∈ [0, T ] , by

Burkholder’s inequality for stochastic integrals against Brownian sheets (see Walsh.J.B. [9], page 315) and
Hölder’s inequality, we have

E
(
|αε

2(t, x)− αε
2(t, y)|p

)
≤ cpE

(∫ t

0

∫
D

|Gt−u(x, z)−Gt−u(y, z)|2σ2(Xε
X0

(u, z)
)
dudz

) p
2

≤ cpK
p

(∫ t

0

∫
D

|Gt−u(x, z)−Gt−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ t

0

∫
D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

≤ C(p,K,X0)|x− y|
(3−2q

′
)p

2q
′

, (3.1)

where (1.3) and 4 in Lemma 1 were used, 1
p′

+ 1
q′

= 1 and C(p,K,X0) is independent of ε.
Similary, from 4, 5 and 6 in Lemma 1, for 0 ≤ s ≤ t ≤ T ,

E
(
|αε

2(t, y)− αε
2(s, y)|p

)
≤ cpE

(∫ s

0

∫
D

|Gt−u(y, z)−Gs−u(y, z)|2σ2(Xε
X0

(u, z))dudz

) p
2

+cpE
(∫ t

s

∫
D

|Gt−u(y, z)|2σ2(Xε
X0

(u, z))dudz

) p
2

≤ cpK
p

(∫ s

0

∫
D

|Gt−u(y, z)−Gs−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ s

0

∫
D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

+cpK
p

(∫ t

s

∫
D

|Gt−u(y, z)|2q
′
dudz

) p

2q
′

×E
(∫ t

s

∫
D

(1 + |Xε
X0

(u, z)|)2p′dudz
) p

2p
′

≤ C(p,K,X0)|t− s|
(3−2q

′
)p

4q
′

(3.2)

Putting together (3.1) and (3.2), by Garsia-Rodemich-Rumsey (see Wang.R. and Zang.T. [10] or Corollary
1.2 in Walsh.J.B. [9]), there exist a random variable Kp,ε(ω) and a constant c such that
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E
(
|αε

2(t, y)− αε
2(s, y)|p

)
≤ Kp,ε(ω)

p(|t− s|+ |x− y|)γ
(
log

c

|t− s|+ |x− y|

)2

(3.3)

and
sup
ε

E[Kp
p,ε] < +∞.

choosing s = 0 in (3.3), we obtain

E
(
sup

0≤s≤T

x∈D

∣∣ ∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy)

∣∣)p ≤ C(p,K,X0) sup
ε

E[Kp
p,ε]

< +∞. (3.4)

Putting (3.1), (3.2) and (3.3) together and using 6 in Lemma 1, there exists a constant C(p,K,Kf , X0) such
that

E(||Xε
t −X0

t ||T∞)p ≤ C(p,K,Kf , X0)

(
E
∫ t

0

(||Xε
s −X0

s ||∞)pds+ ε
p
2

)
By Gronwall’s inequality, we have

E(||Xε
t −X0

t ||∞)p ≤ ε
p
2C(p,K,Kf , X0)e

C(p,K,Kf ,X0)T .

Putting ε → 0, the proof is complete. □
Proof of Theorem 2 : The following Lemma is a consequence of Garsia-Rodemich-Rumsey’s theorem.
Lemma 2: Let Ṽ ε(t, x) = {V ε(t, x) : (t, x) ∈ [0, T ] ×D} be a family of real-valued stochastic processes and let
p ∈ (0,∞). Suppose that Ṽ ε(t, x) satisfies the following assumptions :

A-1°) For any (t, x) ∈ [0, T ]×D,
lim
ε→0

E|V ε(t, x)|p = 0

A-2°) There exists γ > 0 such that for any (t, x), (s, y) ∈ [0, T ]×D

E|V ε(t, x)− V ε(s, y)|p ≤ C(|t− s|+ |x− y|2)2+γ ,

where C is a constant independent of ε.
In this case, for any α ∈ (0, γk ), p ∈ [1, k),

lim
ε→0

E||V ε||pα = 0.

In this section, we prove that
lim
ε→0

E||Xε
t −X0

t ||rα = 0.

Consider the process ηε(t, x) defined by (1.4) and

Xε(t, x) =

∫
D

Gt(x, y)X0(y)dy +

∫ t

0

∫
D

∆Gt−s(x, y)f(X
ε(s, y))dsdy

+
√
ε

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy).

We know that ||Xε −X0||α → 0 in probability as ε → 0+ where X0 is the solution of

X0(t, x) =

∫
D

Gt(x, y)X0(y)dy +

∫ t

0

∫
D

∆Gt−s(x, y)f(X
0(s, y))dsdy.
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In this case, we have

ηε(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)

(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

)
dsdy

+

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy)

then

ηε(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)f
′
(Xε(s, y))ηε(s, y)dsdy

+

∫ t

0

∫
D

Gt−s(x, y)σ(X
ε(s, y))W (ds, dy).

For ε → 0, we have

η0(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)f
′
(X0(s, y))η0(s, y)dsdy

+

∫ t

0

∫
D

Gt−s(x, y)σ(X
0(s, y))W (ds, dy).

To this end, we verify (A-1), (A-2); for V ε = ηε − η0, write

V ε(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)

(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

− f
′
(X0(s, y))η0(s, y)

)
dsdy

+

∫ t

0

∫
D

Gt−s(x, y)
(
σ(Xε(s, y))− σ(X0(s, y))

)
W (ds, dy).

Let

kε1(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)

(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

−f
′
(X0(s, y))ηε(s, y)

)
dsdy,

kε2(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)f
′
(X0(s, y))

(
ηε(s, y)− η0(s, y)

)
dsdy,

kε3(t, x) =

∫ t

0

∫
D

Gt−s(x, y)
(
σ(Xε(s, y))− σ(X0(s, y))

)
W (ds, dy).

Now we shall divide the proof into the following two steps.
Step 1. Following the same calculation as the proof of (3.4) in proposition 1, we deduce that for p > 2,
0 ≤ t ≤ 1

E
(∣∣|kε3∣∣|t∞)

≤ C(p,Kσ, T )

∫ t

0

E
(
||Xε −X0||s∞

)p
ds

≤ ε
p
2C(p,K,Kσ, T,X0).

By Taylor’s formula, there exists a random field βε(t, x) taking values in (0, 1) such that,

f(Xε(s, y))− f(X0(s, y)
)

= f
′(
X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))

)
×(Xε(s, y)−X0(s, y))

Since f
′

is also Lipschitz continuous, we have∣∣f ′(
X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))

)
− f

′(
X0(s, y)

)∣∣
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≤ Cβε(t, x)
∣∣Xε(t, x)−X0(t, x)

∣∣.
then ∣∣f ′(

X0(s, y) + βε(t, x)(Xε(s, y)−X0(s, y))
)
− f

′(
X0(s, y)

)∣∣
≤ C

∣∣Xε(t, x)−X0(t, x)
∣∣.

Hence∣∣kε1(t, x)∣∣ ≤ C

∫ t

0

∫
D

∆Gt−s(x, y)
∣∣(Xε(t, x)−X0(t, x)

)
ηε(s, y)

∣∣dsdy
=

√
εC

∫ t

0

∫
D

∆Gt−s(x, y)
(
ηε(s, y)

)2
dsdy. (3.5)

By Hölder’s inequality, for p > 2

E
(∣∣kε1∣∣t∞)p

≤ ε
p
2Cp

(
sup

0≤s≤T ,x∈D

∣∣∣∣ ∫ t

0

∫
D

∆Gq
s(x, y)dsdy

∣∣∣∣) p
q

×
∫ t

0

E
(
||ηε||s∞

)2p
ds

where 1
p + 1

q = 1.

Using (2.2) and applying proposition 1, there exists a constant C(p,K,Kf , C,Kσ, T,X0) depending on p,
K, Kf , C, Kσ, T , X0 such that

E
(∣∣kε1(t, x)∣∣)p ≤ ε

1
2C(p,K,Kf , C,Kσ, T,X0) (3.6)

Noticing that |f ′ | ≤ Kf , by Hölder inequality, we deduce that for p > 2

E
(∣∣kε2(t, x)∣∣)p

≤ Kp
f

(
sup

0≤s≤T

x∈D

∣∣ ∫ t

0

∫
D

∆Gq
s(x, y)dsdy

∣∣) p
q

∫ t

0

E
(
||ηε − η0||s∞

)p
ds (3.7)

where 1
p + 1

q = 1.
Putting (3.5), (3.6) and (3.7) together, we have

E
(
||ηε − η0||s∞

)p ≤ C(p,K,Kf , C,Kσ, T,X0)

(
ε

1
2 +

∫ t

0

E
(
||ηε − η0||s∞

)p
ds

)
By Gronwall’s inequality, we obtain

E
(
||ηε − η0||s∞

)p ≤ ε
1
2C(p,K,Kb, C,Kσ, T,X0) −→ 0 for ε → 0.
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Step 2. We show that all the terms kεi , i = 1, 2, 3 satisfy the condition (A-2) in Lemma 2. For any p > 2 and
q
′ ∈ (1, 32) such that γ := (3 − 2q

′
)p/(4q

′
) − 2 > 0, for all x, y ∈ D, 0 ≤ t ≤ T , by Burkholder’s inequality

and Hölder’s inequality, we have

E
∣∣kε3(t, x)− kε3(t, y)

∣∣p ≤ CpE
(∫ t

0

∫
D

|Gt−u(x, z)−Gt−u(y, z)|2

×(σ(Xε(u, z))− σ(X0(u, z)))2dudz

) p
2

≤ Cp

(∫ t

0

∫
D

(|Gt−u(x, z)−Gt−u(y, z)|)2q
′
dudz

) p

2q
′

×Kp
σE

(∫ t

0

∫
D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

≤ C(p, q
′
,Kσ,K, T )|x− y|

(3−2q
′
)p

2q
′

(3.8)

where (1.3), 4 in Lemma 1 and Proposition 1 were used, 1
p′

+ 1
q′

= 1.
Similarly, in view of 5 , 6 in Lemma 1; it follows that for 0 ≤ s ≤ t ≤ T , we have

E
∣∣kε3(t, y)− kε3(s, y)

∣∣p
≤ CpE

( ∫ s

0

∫
D

|Gt−u(y, z)−Gs−u(y, z)|2
(
σ(Xε(u, z))− σ(X0(u, z))

)2
dudz

) p
2

+ CpE
( ∫ t

s

∫
D

|Gt−u(y, z)|2
(
σ(Xε(u, z))− σ(X0(u, z))

)2
dudz

) p
2

≤ Cp

(∫ t

0

∫
D

|Gt−u(y, z)−Gs−u(y, z)|2q
′
dudz

) p

2q
′

×Kp
σE

(∫ t

0

∫
D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

+ Cp

( ∫ t

s

∫
D

|Gt−u(y, z)|2q
′
dudz

) p

2q
′

×Kp
σE

(∫ t

0

∫
D

|Xε(u, z)−X0(u, z)|2p
′
dudz

) p

2p
′

≤ C(p, q
′
,Kσ,K, T )|t− s|

(3−2q
′
)p

4q
′

(3.9)

where Proposition 1 were used, 1
p′

+ 1
q′

= 1, C(p, q
′
,Kσ,K, T ) is independent of ε.

Putting together (3.8) and (3.9), we have

E
∣∣kε3(t, x)−kε3(s, y)

∣∣p ≤ C(p, q
′
,Kσ,K, T )

(
|t−s|+|x−y|2

)γ
(3.10)

Consequently, from 4, 6 in Lemma 1, proposition 1 and the result of step 1, we also have :

E
∣∣kεi (t, x)− kεi (s, y)

∣∣p ≤ C
(
|t− s|+ |x− y|2

)γ
, i = 2, 3. (3.11)

Putting together (3.10) and (3.11), we obtain that there exists a constant C independent of ε satisfying that

E
∣∣(ηε(t, x)− η0(t, x))− (ηε(s, y)− η0(s, y))|p ≤ C

(
|t− s|+ |x− y|2

)γ
For any α ∈ (0, 14), r ≥ 1, choosing p > 2, and q

′ ∈ (1, 14) such that α ∈ (0, γp ) and r ∈ [1, p), Lemma 2 we
have

lim
ε→0

E||ηε − η||rα = 0.
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The proof is complete . □

Proof of Theorem 3 : Recall the following lemma from Chenal.F and Millet.A [6].

Lemma 3: Let F : ([0, T ]×D)2 −→ R, α0 > 0 and CF > 0 be such that for any (t, x), (s, y) ∈ [0, T ]×D, set∫ T

0

∫
D

|F (t, x, u, z)− F (s, y, u, z)|2dudz ≤ C(|t− s|+ |x− y|2)α0 . (3.12)

Let N : [0, T ] ×D −→ R be an almost surely continuous, Ft−adapted such that sup{|N(t, x)| : (t, x) ∈ [0, T ] ×
D} ≤ ρ,a.s., and for (t, x) ∈ [0, T ]×D, set

F(t, x) =

∫ T

0

∫
D

F (t, x, u, z)N(u, z)W (dudz)

Then for all α ∈]0, α0
2 [, there exists a constant C(α, α0) such that for all M ≥ ρCFC(α, α0)

P(||F||α ≥ M) ≤ (
√
2T 2 + 1) exp

(
− M2

ρ2CFC2(α, α0)

)
Proof of Theorem 3 : Now, we prove the MDP, that is to say, the process θε defined by (1.5) obeys a

LDP on Cα([0, T ] × D), with the speed function h2(ε) and the rate function Ĩ(.). More precisely, to prove
the LDP of ηε

h(ε) , it is enough to show that ηε

h(ε) is h2(ε)-exponentially equivalent to η0

h(ε) ,that is to say, for
any δ > 0, we have

lim sup
ε→0

h−2(ε) log P
(
||ηε − η0||α

h(ε)
> δ

)
= −∞. (3.13)

Since
||ηε − η0||α ≤ (1 + (1 + T )α)|ηε − η0|Tα

to prove (3.13), it is enough to prove that

lim sup
ε→0

h−2(ε) log P
(
|ηε − η0|Tα

h(ε)
> δ

)
= −∞ , ∀δ > 0.

Recall the decomposition in Proof of Theorem 2,

ηε(t, x)− η0(t, x) = kε1(t, x) + kε2(t, x) + kε3(t, x).

For any q in (32 , 3),
1
p +

1
q = 1, and x, y ∈ D, 0 ≤ s ≤ t ≤ T , by Hölder’s inequality, 4 in Lemma 1 and (2.3),

we have∣∣kε2(t, x)− kε2(t, y)
∣∣p ≤ Kf

(∫ t

0

∫
D

|∆Gt−u(x, z)−∆Gt−u(y, z)|qdudz
) 1

q

×
(∫ t

0

∫
D

|ηε(u, z)− η0(u, z)|pdudz
) 1

p

≤ Kf |x− y|
3−q
q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

(3.14)
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Similarly, in view of 5 and 6 in Lemma 1, it follows that for 0 ≤ s ≤ t ≤ T ,

∣∣kε2(t, y)− kε2(s, y)
∣∣p ≤ Kf

(∫ s

0

∫
D

|∆Gt−u(y, z)−∆Gs−u(y, z)|qdudz
) 1

q

×
(∫ s

0

∫
D

|ηε(u, z)− η0(u, z)|p
) 1

p

+

(∫ t

s

∫
D

|∆Gt−u(y, z)|qdudz
) 1

q

×
(∫ t

0

∫
D

|ηε(u, z)− η0(u, z)|p
) 1

p

≤ 2Kf |t− s|
3−q
2q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

(3.15)

Putting together (3.14), (3.15), we have

∣∣kε2(t, y)− kε2(s, y)
∣∣p ≤ C(Kf )(|t− s|+ |x− y|2)

3−q
2q ×

(∫ t

0

(||ηε − η0||u∞)pdu

) 1
p

.

Choosing q ∈ (32 , 3), such that α = (3− q)/2q and noticing that
||ηε − η0||u∞ ≤ (1 + u)α|ηε − η|uα, we obtain that

|kε2|tα ≤ C(Kf )

(∫ t

0

((1 + u)α|ηε − η0|uα)pdu
) 1

p

Thus, for t ∈ [0, 1], we have

(|ηεt − η0t |tα)p ≤ C(p, T,Kf )

[(
|kε1(t)|tα + |kε3(t)|tα

)p
+

∫ t

0

(|ηε − η0|sα)pds
]

Applying Gronwall’s Lemma, we have

(|ηεt − η0t |tα)p ≤ C(p, T,Kf )

[(
|kε1(t)|tα + |kε3(t)|tα

)p]
eC(p,T,Kf )T (3.16)

By (3.15) and (3.16), its sufficient to prove that for any δ > 0

lim sup
ε→0

h−2(ε)logP
(
|kεi (t)|Tα
h(ε)

> δ

)
= −∞ i = 1, 3.

Step 1. For any ε > 0, η > 0 we have

P
(
|kε3|Tα > h(ε)δ

)
≤ P

(
|kε3|Tα > h(ε)δ, |Xε −X0|T∞ < η

)
+ P(|Xε −X0|T∞ ≥ η) (3.17)

By 4 and 6 in Lemma 1, Gt−u(x, z)1[u≤t] satisfies (3.12)(see Lemma 3) for α0 =
1
2 .

Applying Lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C,M = h(ε)δ, ρ = ηKσ,

Ỹ (t, x) =
(
σ(Xε

X0
(t, x))− σ(X0

X0
(t, x))

)
1||Xε−X0||T∞>η

, we obtain that for all ε sufficiently small such that h(ε)δ ≥ ρCC(α, 12),

P
(
|kε3(t)|Tα > h(ε)δ, ||Xε −X0||T∞ < η

)
≤ (

√
2T 2+1) exp

(
− h2(ε)δ2

η2K2
σCC2(α, 12)

)
. (3.18)
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Since Xε
X0

satisfies the LDP on Cα([0, T ]×D), see Theorem 1

lim sup
ε→0

ε logP(||Xε −X0||T∞ ≥ η) ≤ lim sup
ε→0

ε logP(||Xε −X0||α ≥ η)

≤ − inf{IX0(f) : ||f −X0||α ≥ η}

In this case, the good rate function I = {IX0(f) : ||f −X0||α ≥ η} has compact level sets, the ”inf{IX0(f) :
||f −X0||α ≥ η}” is obtained at some function f0. Because IX0(f) = 0 if and only if f = X0

X0
, we conclude

that
− inf{IX0(f) : ||f −X0||α ≥ η} < 0.

For h(ε) → ∞ ,
√
εh(ε) → 0, we have

lim sup
ε→0

h−2(ε)logP
(
||Xε −X0||T∞ ≥ η

)
= −∞. (3.19)

Since η > 0 is arbitrary, putting together (3.17), (3.18) and (3.19), we obtain

lim sup
ε→0

h−2(ε)logP
(
||kε3||α
h(ε)

≥ δ

)
= −∞. (3.20)

Step 2. For the first term kε1(t), let

kε1(t, x) =

∫ t

0

∫
D

∆Gt−s(x, y)B
ε(s, y)dsdy,

where

Bε(s, y) =

(
f(Xε(s, y))− f(X0(s, y)

)
√
ε

− f
′
(X0(s, y))ηε(s, y)

)
,

as stated in the proof of Theorem 2, we have

||Bε||T∞ ≤ C
(||Xε

X0
−X0

X0
||T∞)2

√
ε

.

However, by Hölder’s continuity of Green function G, it is easy to prove that, for any α ∈ (0, 14)

|kε2|Tα ≤ C(α, T )||Bε||T∞.

From the proof of proposition 1, we obtain that

||Xε
X0

−X0
X0

||T∞ ≤ C(Kb, T )||k̃ε2||T∞
where

k̃ε2(t, x) =

(
ε

∫ t

0

∫
D

∆Gt−s(x, y)σ(X
ε
X0

(s, y))W (dsdy)

) 1
2

.

Applying lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C, ρ =

√
εK(1 + ||XT

X0
||T∞ + η)

Z̃(t, x) =
√
εσ(Xε

X0
(t, x))1[||Xε

X0
||T∞<||X0

X0
||T∞+η],

for any η > 0, we obtain that for all ε is sufficiently small such that
M ≥

√
εK(1 + ||XT

X0
||T∞ + η)CC(α, 12),

P(||k̃ε2||T∞ ≥ M, ||Xε
X0

||T∞ < ||X0
X0

||T∞ + η)

≤ (
√
2T 2 + 1) exp

(
− M2

εK2CC2(α, 12)(1 + ||X0
X0

||T∞ + η)2

)
.
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For the same reason as (3.20), we obtain

lim supε→0 h
−2(ε) logP(||Xε

X0
||T∞ ≥ ||X0

X0
||T∞ + η)

≤ lim sup
ε→0

h−2(ε) logP(||Xε
X0

−X0
X0

||T∞ ≥ η)

= −∞.

For any η > 0, by Bernstein’s inequality and the continuity of σ, we have

lim sup
ε→0

h−2(ε) logP
(
|kε1(t)|Tα
h(ε)

≥ δ

)

≤ lim sup
ε→0

h−2(ε) logP
((

||k̃ε2||T∞
)2

≥
√
εh(ε)δ

C(α, T,Kf , C)

)
≤ lim sup

ε→0
h−2(ε) log

[
P
((

||k̃ε2(t)||T∞
)2 ≥ √

εh(ε)δ

C(α, T,Kf , C)
,

||Xε
X0

|| < ||X0
X0

||T∞ + η

)
+ P(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

]
≤

(
lim sup

ε→0

−δ
√
εh(ε)C(α, T,Kf , C)K2CC2(α, 12)(1 + ||XX0 ||T∞ + η)2

)
∨
(
lim sup

ε→0
h−2(ε) logP(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

)
= −∞. □

4 A FEW EXAMPLES

4.1 Example one. Central limit theorem for stochastic Cahn-Hilliard equation with uniformly Lips-
chitzian coefficients
Let O be an open connected set in R3 such that O = [0, π]3 and Cα([0, 1] ×O) denotes the set of α-Hölder
continuous fonctions. Let {uε(t, x)}ε>0 be the solution of stochastic Cahn-Hilliard equation indexed by
ε > 0, given by

∂tu
ε(t, x) = −∆

(
∆uε(t, x)− 4(uε(t, x))3 + 4uε(t, x)

)
+
√
ε(1− uε(t, x))Ẇ ,

∂uε(t,x)
∂ν = ∂∆uε(t,x)

∂ν = 0, on (t, x) ∈ [0, T ]× ∂O (4.1)

uε(0, x) = u0(x)

where the coefficients f and σ are bounded, uniformly Lipschitz and verify the condition (1.2) and (1.3)
such that Kf = 16 and Kσ = 1. Consider the process βε(t, x) such that

βε(t, x) =

(
uε − u0√

ε

)
(t, x). (4.2)

In this section, we establish the CLT for the stochastic Cahn-Hilliard equation with uniformly Lipschitzian
coefficients in Hölder norm ||.||α such that for all u : [0, 1]×O −→ R,

||u||α = sup
(s,x)∈[0,T ]×O

|u(s, x)|+ sup
(s1,x1)∈[0,T ]×O
(s2,x2)∈[0,T ]×O

|u(s1, x1)− u(s2, x2)|
(|s1 − s2|+ |x1 − x2|2)α

.

Now, we obtain the main results similary to Theorem 2.

Theorem 5: For any α ∈ [0, 14), r ≥ 1, the process βε(t, x) defined by (4.2) converges in Lr to the random
process β0(t, x) as ε → 0 where β0(t, x) verifies the stochastic partial differential equation

∂tβ
0(t, x) = −∆(∆β0(t, x)− 4

(
3(u0(t, x))2 − 1)β0(t, x)

)
+ (1− u0(t, x))Ẇ (t, x)
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with initial condition η0(0, x) = 0.
Proof of Theorem 5 : Consider the process βε(t, x) defined by (4.2) depending on uε(t, x) and u0(t, x)
such that

βε(t, x)

= 4

∫ t

0

∫
O
∆t−sG(x, y)

(
(uε(s, y))3 − uε(s, y)− ((u0(s, y))3 − u0(s, y))√

ε

)
dsdy

+

∫ t

0

∫
O

( ∞∑
i=0

e−µ2
i (t−s)wi(x)wi(y)

)
(1− uε(s, y))W (ds, dy).

Using the equality ∀a, b ̸= 0,a
3−b3

a−b = a2 + ab+ b2, we obtain

βε(t, x) = 4

∫ t

0

∫
O
∆t−sG(x, y)

[
(uε(s, y))2 + uε(s, y).u0(s, y)

+ (u0(s, y))2 − 1
]
βε(s, y)dsdy

+

∫ t

0

∫
O

( ∞∑
i=0

e−µ2
i (t−s)wi(x)wi(y)

)
(1− uε(s, y))W (ds, dy)

For ε → 0, we obtain

β0(t, x) = 4

∫ t

0

∫
O
∆t−sG(x, y)

(
3(u0(s, y))2 − 1

)
β0(s, y)dsdy

+

∫ t

0

∫
O

( ∞∑
i=0

e−µ2
i (t−s)wi(x)wi(y)

)
(1− u0(s, y))W (ds, dy).

Denote the process Rε = βε − β0 such that

Rε = mε
1(t, x) +mε

2(t, x) +mε
3(t, x)

where

mε
1(t, x) = 4

∫ t

0

∫
O
∆Gt−s(x, y)

[(
(uε(s, y))3 − (u0(s, y))3√

ε

)
−
(
uε(s, y)− u0(s, y)√

ε

)
−
(
3(u0(s, y))2 − 1

)
βε(s, y)

]
dsdy,

mε
2(t, x) = 4

∫ t

0

∫
O
∆Gt−s(x, y)

(
3(u0(s, y))2 − 1

)(
βε(s, y)− β0(s, y)

)
dsdy,

mε
3(t, x) =

∫ t

0

∫
O

( ∞∑
i=0

e−µ2
i (t−s)wi(x)wi(y)

)
(u0(s, y)− uε(s, y))W (ds, dy).

Step 1. For p > 2 and t ∈ [0, 1], we obtain

E
(∣∣|mε

3(t, x)
∣∣|t∞)

≤ C(p, T )

∫ t

0

E
(
||uε − u0||s∞

)p
ds

≤
√
εC(p, T, u0).

By Taylor’s formula, there exists a random field γε(t, x) taking values in [0, 1] such that

f(uε(s, y))− f(u0(s, y))

= f
′(
u0(s, y) + βε(t, x)(uε(s, y)− u0(s, y))

)
(uε(s, y)− u0(s, y))
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For the first term mε
1(t, x), we have∣∣mε

1(t, x)
∣∣ ≤ 4

√
εC

∫ t

0

∫
O
∆Gt−s(x, y)

(
βε(s, y)

)2
dsdy. (4.3)

By Hölder’s inequality, for p > 2

E
(∣∣mε

1(t, x)
∣∣t
∞
)p

≤ (
√
ε)pCp

(
sup

0≤s≤T , x∈O

∣∣∣∣ ∫ t

0

∫
O
∆Gq

s(x, y)dsdy

∣∣∣∣) p
q

×
∫ t

0

E
(
||βε||s∞

)2p
ds

where 1
p +

1
q = 1. Using (1.5) and applying proposition 1, there exists a constant ℵp,K,C depending on p, K,

C such that

E|mε
1(t, x)

∣∣p ≤
√
ε.ℵp,K,C . (4.4)

Since |f ′ | ≤ 16,by Hölder inequality , we deduce that for p > 2

E|mε
2(t, x)|p ≤ 24p

(
sup

0≤s≤T ,x∈

∣∣∣∣ ∫ t

0

∫
O
∆Gq

s(x, y)dsdy

∣∣∣∣) p
q

×
∫ t

0

E
(
||βε − β0||s∞

)p
ds (4.5)

where 1
p + 1

q = 1.

Putting (4.3),(4.4) and (4.5) together, we have

E
(
||βε − β0||s∞

)p ≤ ℵp,K,C

(√
ε+

∫ t

0

E
(
||βε − β0||s∞

)p
ds
)
.

By Gronwall’s inequality, we obtain

E
(
||βε − β0||s∞

)p ≤
√
εℵp,K,C → 0 for ε → 0.

Step 2. We prove that the terms kεi , i = 1, 2, 3 satisfy the condition (A-2) in Lemma 2.
For any p > 2 and q

′ ∈ (1, 32)such that γ := (3 − 2q
′
)p/(4q

′
) − 2 > 0, for all x, y ∈ O , 0 ≤ t ≤ T ,by

Burkholder’s inequality and Hölder’s inequality, we have

E
∣∣mε

3(t, x)−mε
3(t, y)

∣∣p ≤ C(p, q
′
,K, T )|x− y|

(3−2q
′
)p

2q
′

(4.6)

where (1.3), 4 in Lemma 1 and Proposition 1 were used, 1
p′

+ 1
q′

= 1 .
Similarly, in view of 5, 6 in Lemma 1; its follows that for 0 ≤ s ≤ t ≤ T , we have

E
∣∣mε

3(t, y)−mε
3(s, y)

∣∣p ≤ C(p, q
′
,K, T )|t− s|

(3−2q
′
)p

4q
′

(4.7)

where Proposition 1 were used, 1
p′

+ 1
q′

= 1, C(p, q
′
,K, T ) is independent of ε .

Putting together (4.6) and (4.7), we have

E
∣∣mε

3(t, x)−mε
3(s, y)

∣∣p ≤ C(p, q
′
,Kσ,K, T )

(
|t−s|+|x−y|2

)γ
. (4.8)

Consequently, from 4, 6 in Lemma 1, proposition 1 and the result of step 1, we also have :

E
∣∣mε

i (t, x)−mε
i (s, y)

∣∣p ≤ C
(
|t− s|+ |x− y|2

)γ
, i = 2, 3. (4.9)

Putting together (4.8) and (4.9), we obtain that there exists a constant C independent of ε satisfying that

E
∣∣(βε(t, x)− β0(t, x))− (βε(s, y)− β0(s, y))|p ≤ C

(
|t− s|+ |x− y|2

)γ
.

For any α ∈ (0, 14), r ≥ 1, choosing p > 2, and q
′ ∈ (1, 32) such that α ∈ (0, γp ) and r ∈ [1, p), Lemma 2 we

have
lim
ε→0

E||βε − β||rα = 0.
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4.2 Example two. Moderate Deviations Principle for stochastic Cahn-Hilliard equation with uni-
formly Lipschitzian coefficient
In this section we establish the MDP for the stochastic Cahn-Hilliard equation (4.1). Consider the process
Θε(t, x) such that

Θε(t, x) :=

(
uε − u0√
εa(ε)

)
(t, x). (4.10)

In this section, we study the LDP for Θε(t, x) defined by (4.10) as ε → 0 with 1 < a(ε) < 1√
ε
.

Theorem 6: The process {Θε(t, x)}ε>0 defined by (4.10) obeys a LDP on the space Cα([0, 1] × O), with speed
a2(ε) and rate function JM.D.P (.) such that :

JM.D.P (g) = inf
g=G0(u0,I(h))

{
1

2

∫ T

0

∫ π

0

∫ π

0

∫ π

0

ḣ2(t, x)dtdx1dx2dx3

}
and +∞ otherwise.
Proof of Theorem 6: It is sufficient to prove that

lim sup
ε→0

a−2(ε) log P
(
|βε − β0|α

a(ε)
> δ

)
= −∞ , ∀δ > 0.

Recall the decomposition in the proof of Theorem 5

βε(t, x)− β0(t, x) = mε
1(t, x) +mε

2(t, x) +mε
2(t, x).

For any q in (32 , 3),
1
p + 1

q = 1, and x, y ∈ O, 0 ≤ s ≤ t ≤ T , by Hölder’s inequality, 4 in Lemma 1 and (2.3),
we have∣∣mε

2(t, x)−mε
2(t, y)

∣∣p ≤ 16|x− y|
3−q
q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

. (4.11)

Similarly, in view of 5 and 6, it follows that for 0 ≤ s ≤ t ≤ T ,

∣∣mε
2(t, y)−mε

2(s, y)
∣∣p ≤ 32|t− s|

3−q
2q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

. (4.12)

Putting together (4.11), (4.12), we have

∣∣mε
2(t, y)−mε

2(s, y)
∣∣p ≤ C(Kf )(|t− s|+ |x− y|2)

3−q
2q ×

(∫ t

0

(||βε − β0||u∞)pdu

) 1
p

.

Choosing q ∈ (32 , 3), such that α = 3− q/2q and noticing that ||βε − β0||u∞ ≤ (1 + u)α|βε − β0|uα, we obtain
that

|mε
2|tα ≤ C(Kf )

(∫ t

0

((1 + u)α|βε − β0|uα)pdu
) 1

p

.

Thus, for t ∈ [0, 1], we have

(|βε
t − β0

t |tα)p ≤ C(p, T,Kf )

[(
|mε

1(t)|tα + |mε
3(t)|tα

)p
+

∫ t

0

(|βε − β0|sα)pds
]
.

Applying Gronwall’s Lemma to Ψ(t) = (|βε
t − β0

t |tα)p, we have

(|βε
t − β0

t |tα)p ≤ C(p, T,Kf )

[(
|mε

1(t)|tα + |mε
3(t)|tα

)p]
eC(p,T,Kf )T . (4.13)

By (4.12) and (4.13), it is sufficient to prove that for any δ > 0,

lim sup
ε→0

h−2(ε)logP
(
|mε

i (t)|Tα
a(ε)

> δ

)
= −∞ i = 1, 3.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 47–65 63

Step 1. For any ε > 0, η > 0 we have

P
(
|mε

3(t)|Tα > a(ε)δ
)

≤ P
(
|mε

3(t)|Tα > a(ε)δ, |uε − u0|T∞ < η
)

+ P(|uε − u0|T∞ ≥ η) (4.14)

By 4 and 6 in Lemma 1,
(∑∞

i=0 e
−µ2

i (t−s)wi(x)wi(y)
)
.1[u≤t] satisfies (3.12)(see Lemma 3 ) for α0 =

1
2 .

Applying Lemma 3, we have

F (t, x, u, z) =
( ∞∑
i=0

e−µ2
i (t−s)wi(x)wi(z)

)
1[u≤t], α0 =

1

2
, CF = C,M = a(ε)δ,

ρ = ηKσ, Y
∗(t, x) =

(
u0(t, x)− uε(t, x)

)
1||uε−u0||T∞>η

we obtain that for all ε sufficiently small such that a(ε)δ ≥ ρCC(α, 12)

P
(
|mε

3(t)|Tα > a(ε)δ, ||uε − u0||T∞ < η
)
≤ (

√
2T 2 + 1) exp

(
− a2(ε)δ2

η2K2
σCC2(α, 12)

)
. (4.15)

Since uε satisfies the LDP on Cα([0, T ]×O)

lim sup
ε→0

ε logP(||uε − u0||T∞ ≥ η) ≤ lim sup
ε→0

ε logP(||uε − u0||α ≥ η)

≤ − inf{I(f) : ||f − u0||α ≥ η}.

In this case, the good rate function I = {I(f) : ||f − u0||α ≥ η} has compact level sets, the ”inf{I(f) :
||f − u0||α ≥ η}” is obtained at some function f0. Because I(f) = 0 if and only if f = u0, we conclude that

− inf{I(f) : ||f − u0||α ≥ η} < 0.

For a(ε) → ∞ ,
√
εa(ε) → 0, we have

lim sup
ε→0

a−2(ε)logP
(
||uε − u0||T∞ ≥ η

)
= −∞. (4.16)

Since η > 0 is arbitrary, putting together (4.14), (4.15) and (4.16), we obtain

lim sup
ε→0

a−2(ε)logP
(
||mε

3||α
a(ε)

≥ δ

)
= −∞. (4.17)

Step 2. For the first term mε
1(t), let

mε
1(t, x) =

∫ t

0

∫
O
∆Gt−s(x, y)M

ε(s, y)dsdy,

where

Mε(s, y) = 4

((
(uε(s, y))3 − (u0(s, y))3√

ε

)
−
(
uε(s, y)− u0(s, y)√

ε

)
−
(
3(u0(s, y))2 − 1

)
βε(s, y)

)
as stated in the proof of Theorem 5, we have

||Mε||T∞ ≤ C
(||uε − u0||T∞)2√

ε
.

However, by the Hölder’s continuity of Green function G, it is easy to prove that, for any α ∈ (0, 14)

|mε
2|Tα ≤ C(α, T )||Mε||T∞.

From the proof of proposition 1, we obtain that

||uε − u0||T∞ ≤ C(T )||m̃ε
2||T∞.
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where

m̃ε
2(t, x) =

√
ε

∫ t

0

∫
O
∆Gt−s(x, y)uε(s, y)W (dsdy).

Applying lemma 3, we have

F (t, x, u, z) = Gt−u(x, z)1[u≤t], α0 =
1

2
, CF = C, ρ =

√
εK(1 + ||uT ||T∞ + η)

Z∗(t, x) =
√
ε(1− uε(t, x))1[||uε||T∞<||u0||T∞+η],

for any η > 0, we obtain that for all ε is sufficiently small such that M ≥
√
ε(1 + ||uT ||T∞ + η)CC(α, 12),

P(||m̃ε
2||T∞ ≥ M, ||uε||T∞ < ||u0||T∞ + η)

≤ (
√
2T 2 + 1) exp

(
− M2

εK2CC2(α, 12)(1 + ||u0||T∞ + η)2

)
.

For the same raison as (4.11), we obtain

lim sup
ε→0

a−2(ε) logP(||uε||T∞ ≥ ||u0||T∞ + η)

≤ lim sup
ε→0

a−2(ε) logP(||uε − u0||T∞ ≥ η) = −∞.

For any η > 0, by Bernstein’s inequality and the continuity of σ, we have

lim sup
ε→0

a−2(ε) logP
(
|mε

1(t)|Tα
a(ε)

≥ δ

)

≤ lim sup
ε→0

a−2(ε) logP
((

||m̃ε
2||T∞

)2

≥
√
εa(ε)δ

C(α, T,Kf , C)

)
≤ lim sup

ε→0
a−2(ε) log

[
P
((

||m̃ε
2(t)||T∞

)2 ≥ √
εa(ε)δ

C(α, T,Kf , C)
,

||uε|| < ||u0||T∞ + η

)
+ P(||uε|| ≥ ||u0||T∞ + η)

]
≤

(
lim sup

ε→0

−δ
√
εa(ε)C(α, T,Kf , C)K2CC2(α, 12)(1 + ||u0||T∞ + η)2

)
∨
(
lim sup

ε→0
h−2(ε) logP(||Xε

X0
|| ≥ ||X0

X0
||T∞ + η)

)
= −∞.

5 CONCLUSION

In this paper, we have proved a CLT and a MDP for a perturbed stochastic Cahn-Hilliard equation in
Hölder space by using the exponential estimates in the space of Hölder continuous functions and the
Garsia-Rodemich-Rumsey’s lemma. We can also examine the same situation in Besov-Orlicz space.
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