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1 INTRODUCTION AND PRELIMINARIES.

The concept of (p, o)-absolutely continuous linear operators, was introduced by Matter [10], in order to
analyze super-reflexive Banach spaces, establishing many of its fundamental properties. In the nineties,
this concept developed by Lépez Molina and Sanchez Pérez [8]. The class of (p,o)-absolutely continu-
ous operators can be considered as an “interpolated” class between the p-summing operators and the
continuous operators, preserving some of the characteristic properties of the first class.

In 2013 Dahia et al. [6] defined and characterized the class of (p;pi, ..., pm; 0)-absolutely continuous
multilinear operators on Banach spaces as a natural multilinear extension of the classical class of (p,o)-
absolutely continuous linear operators and extends almost all the ones that are satisfied by the class of
absolutely p-summing and p -dominated multilinear operators. On the other hand, the class of all Dimant
strongly (p, o)-continuous multilinear operators was introduced by Achour et al. in [1] as an intermediate
class between the class of strongly multilinear operators (see [7]) and the class of all continuous multilinear
operators.

In this paper, we present a tensor norm that satisfies that the topological dual of the corresponding
normed tensor product is isometric to the space of all Dimant strongly (p,o)-continuous multilinear
operators. Note that the idea of tensorial representation has worked successfully in many subclass of
multilinear operators (see [2], [3], [4], [5], [6], [9] and the references therein).

Let m € N and X;,(j = 1,...,m),Y be Banach spaces over K, ( either R or C). We will denote by
L(X1,...,Xm;Y) the Banach space of all continuous m-linear mappings from X; x ... x X,, into Y, under
the norm

} )

ITI = sup [T, a™)
:L"jEBXj ,1<5<m
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where B X; denotes the closed unit ball of X;(1 < j < m). Let now X be a Banach space and 1 < p < oc.
We write p* for the real number satisfying 1/p + 1/p* = 1. We denote by ¢} (X) the space of all sequences
(z;)!"  in X with the norm

()i ll, = (Z\Ilelp> 7

and by £ , (X) the space of all sequences (x;);_; in X with the norm

1
P
||(x7«)?:1”p7w = Sup (Z| "L"“ > ?

l[6ll <1

where X* denotes the topological dual of X.
Letl1 <p<ooand 0 <o < 1. Forall (z z)Z 1 € Xj,(1<j<m)weput

ol = s |30 fetada) [T e

YEBL(xq,...Xm) \ i=1 j=1
It is clear that .
n pa
sup (Z\@(ﬂc}, 7351”)!“’) < Opo((27)i21)
YEBL(Xq,.. . Xm) \i=1

for all (z ) CX;,1<j<m.
Definition 1.1. A mapping T € L(X1, ..., X;»;Y) is Dimant strongly (p, 0)-continuous if there is a constant
C > 0 such that for any z},...,27, € X;,1 < j < m, we have

(T (2] < C dpol(a]i). (1.1)

The class of all Dimant strongly (p, o)-continuous m-linear operators from X; x --- x X,, into Y, which is
denoted by £,7 (X1,...,X,,;Y) is a Banach space with the norm ||| ye Which is the smallest constant C'
such that the mequahty . 1.1) holds.

2 TENSORIAL REPRESENTATION

We introduce a tensor norm on X; ® ... ® X,, ® Y so that the topological dual of the resulting space is
isometric to (Lp7 (X1, ..., Xo; Y7), [l z30)-
The injective tensor norm on X; ® ... ® X;,, ® Y is defined by

e(u) = sup Zm( D b2 (yi) |

¢j€Bx; ,PE By * i—=1

where > | 2! ® ... ® 2" ® y; is any representation of u € X1 ® ... ® X,, @ Y. The projective tensor norm
on X; ®..® X,, ®Y is defined by

n
=it 37 [fet | e il
=1

where the infimum is taken over all representations of u of the form u = 7' | 2} ® ... ® 2" ® y; with
xf S Xj,yi eYi=1,..,nj3=1..m.
Forl1 <pr<oo,0<o< 1With%+1_7(’:1andueX1®...®Xm®1’,weconsider

dp,o(u) = inf 5p0((fcg)?=1) H(yz‘)?ﬂllr,

where the infimum is taken over all representations of u of the formu =Y 2! ® .. ® 27" ® y;.
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Proposition 2.1. d, , is a reasonable crossnorm on X1 ® ... ® X, @ Y and e < d, » < .

Proof. Letu/,v" € X; ® ... ® X;;, ® Y. For all € > 0 choose representations of v’ and u” of the form

/ N

n
W = l‘; R .. @l‘/m@yz, o’ _Zx/d@ ®$//m®y
i=1 i=1
such that
dpo(u) +€> 5pa((x?)§i1). H(yi)iilHr and  dpq(u") + ¢ > dpo((x ;/j H Yy )i 1H .

We can write v/, " in the following way

ll

,n/
=Y e . .emet, u' = Zz” ®..02"mt!,
1=1

with
/ = . .
2 = (dpc,(u)—-i—e)P at, A =al j=2,. myi=1,..,n
5p0((;p'.7)ﬂ/1) 70 i i 9y ) ) ) )
1 1=
f = Fpo (27 )i4) yli=1,..n'
1—o J19 [REES) 9
(dpo(w') +e) 7
l—0c
d 1 Y . .
Zéll - ( ?U(z: )//J_;:") )p -'L‘glla Zglj = IL‘;/J,] - 27 y My 1 = 17 an”a
po\\ ;" )i=1
By ((22)1)
tl-/ — po 7 Ji=1 ”,i_la 7n//
i (dpo (u) + 5)1%’ Y
It follows that
Sy 1-o | / 1
o () = (W) +€) 7 j = Tom and ||| < (o) +2)7

1—0o

po (V) = (W) +)'F = 1,om and ()| < (@polu) +e)

Thus ,
S () |0 | <de bl () + 2,

Spo ()7 )). |ty ‘ +dp o (u") + 2¢.

The two last inequalities imply that d , (v’ + u") < dp, (') + dp - (u”) + 2¢, hence the triangular inequality
is proved for d, ;. It is easy to see that dj, ,(A\u) = |Adpo(u) forallu € X1 ® .. ® X, ® Y and A € K.
Now, let u = Z?:l le R ... x;” RY; € X1 ®..0 X, ®Y, 1/1 € By« and qu € Bx;s,j =1,....m. By Holder’s
inequality we get

()b (7)1 (3i)

< (; \¢1<x3>...¢m<xr>\l”v) T

< sw (zw r)\lpv) T
¢>€Bc(x1 ,,,,, Xm)

< Gl y) N,

Then e(u) < 5pg((m{ )i—1) | (i)i1]l,.- Since this holds for every representation of u, we obtain e(u) < d s (u).
Thus dp,(u) = 0 implies u = 0. Hence d,, » is a norm on X ®...9 X,,®Y. Itis clear that d, , (7' ®...02"®y) <
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|zt]| .. [l llyl| for every a7 € X;,j =1,...,mand y € Y. Let ¢; € X7 with ¢; # 0,5 = 1,...,m, let ¢ € Y*
and letu =" 2! ®..® 27 @ y;. Then applying Holder’s inequality yields

|61 ® ... ® P ® Y(u)]

='¢1®---®¢m®¢( T .. QT QY

M=

=1
1—0o
p

< (z \¢1<xi>...¢m<xz”>\l—v)” ),
=1 Y

< Ngall o Nidmll 16l sup <§;¢<x3,.,.,x¢);&>P )i,
Xm)

EB[:(Xl ..... =1

<l @ull - Nl 1400 Opor ((2)i) 1 (we)ia -

It follow that [¢1 ® ... ® ¢, @ ()| < ||P1]] ... [|Pm]] |¥]] dp,o(w). Therefore ¢p1 & ... ® ¢, ® 1 is bounded and
satisfies |p1 ® ... ® ¢ @ Y| < ||61]) ... |om ] ||| and we have shown that d, , is a reasonable crossnorm. It
only remains to show that d,,, < w. For every representation > /' | 71 ®...@ 2" ®@y;, of u € X1 ®..0 X, @Y

we have A . '
dro(w) < Bpo(E) iy,

n m 1T o n 71
< (S Py
i=1j=1 =1
m 1 m 1
() Qi N
In the representation of u, replacing z! by ~*= Tl x; and y; by = ——y; with g1, ..., qm > 1

m
such that qil + ..+ qim = 1_7", by a simple calculation, we obtain d,, ,(u) < Y1, kl:[1 |2%|| l|y:|l. Taking the
infimum over all representation of u, we find d, ,(u) < m(u). O

In what follows, we consider the tensor product of linear operators in connection with the reasonable
crossnorm d, ,. We show that the reasonable crossnorm d,, , is actually a tensor norm [11} Page 127].

Proposition 2.2. Let X;,Y;, X,Y be Banach spaces, p > 1,0 < o0 < 1, T € L(X,Y) and T; € L(X;,Y}),
( =1,...,m). Then there is a unique continuous linear operator

T\ @, - Py T @dyy T (X18..0Xn@X, dpo) — (Y18..0YnBY,dy0) ,

such that

Ty ®q,, - Qdyy T ®a,, T(@' @ .. @ 2" @2) = (T12") @ ... ® (T1n2™) @ (Tz),

Pp,o

for every 27 € X;,(j = 1,...,m) and x € X. Moreover
m
IT1 @4, - Qdyp T @y, T|| = IT1 ® .. @ T @ T|| = I T TTIT51I-
j=1

Proof. By [11) Page 7] there is a unique linear operator
NN®@.Tn,T: (X1®.0X,0X) — (V1®..0Y,Y),

suchthat 71 ®..07,0T(z'®...@2"®r) = (T12')®...Q (T),2™)® (T'z) for every 27 € X;,j =1,...,m and
r € X. We may suppose T #0,j =1,....,mand T # 0. Letu=> " 2/ ®..®12" Q2 € X1 ® .. X, ® X,
hence the sum )" | (Tlx%) ®...0(Tmal")®(Tx;) is a representation of 71 ®...Q0T, T (u) in V1 ®...0Y,, ®Y.
Then, forp>1,0<oc<landr > 1with%+177" =1, we have

dpo (Th @ ... 0 T, @ T'(w))

Spo (Tja])iy) (T )iy,

1T TT I3 600 (i) )i D,
j=1

IA

IN
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Since this holds for every representation of u, we get

m
dpo (T1 @ ... @ T @ T(w)) < T T 175 dp.o ().
j=1
This means that 71 ® ... ® T};, ® T' is bounded for the crossnorms on d,, , and

m
1Ty & ... @ T @ T < |7 TT 17511
j=1
On the other hand, as d),, is an reasonable crossnorm, we get that

Tz fjl |T29|| = dpo (Ti2") ® .. ® (Twa™) ® (T))

< INM®@..@Tn@T|dpo (¢! @ ... 0 2™ @ )

m .
= 1@ o Tua Tl IT [l°]
j:

m
Thus |11 ® ... @ T, @ T|| > ||T|| I] |T5]| and therefore
j=1

m
I ® .0 T T| = |7 TT 151
j=1

Now, taking the unique continuous extension of the operator 77 ® ... ® 1), ® T to the completions of
X1®.0X,®Xand V1 ®...®Y,, ®Y, which we denote by T} ®q,, ,, ... ®q, , Tin ®a, , T, we obtain a unique
linear operator from (X1<§>dp,g--@dp,ng@dp,gX, dp,o) into (Y1®dw...@dpngm@)dp,aY, dp,o) with the norm

m
|71 ®a, - ®a,, T Ra,, T|| = I H 151 -
j=1

Follows the idea of [9, Theorem 3.7] we prove the following result

Theorem 2.3. The space (L7 (X1, ..., Xm; Y*), ”‘Hz:;’“) is isometrically isomorphic to (X1 ® ... ® X, @Y, dp »)*
through the mapping ¥ defined by

V(T (a' ®.. 0™ @y) =T ...a™)(y),
forevery T € L7 (X1yeey X3 Y*), 27 € Xj, j=1,...;m,and y € Y.

Proof. 1t is easy to see that the correspondence ¥ defined as above is linear. It remains to show the
surjectivity and that [|U(T) | x,s. 0x,0v,8,.) = 1Tllzpe for all T'in L5 (X1, ..., Xn; Y™). Let ¢ € (X1 ®
@ X ®Y,dy )" and we take T € £, (X1, ..., X;n; Y*) defined by T(z!,...,2™)(y) = (2! ® ... @ 2™ ®y).
Let (z},...,27™)" ; C X1 X ... X Xy,. For each e > 0, choose (y;)"_; C Y, |lyi|| = 1, i = 1,...,n such that

sy by

p

STk )77 <o+ 30 Tk 2l ()| 77 - 2.1)
=1 =1

Now, for Ay, ..., A\, € K we have

> AT (@), 2 (i)
i=1

= ‘gf) (Z Nzt @ ... @z ®yi>

i=1

< 1¢lldpo (Z 7 ®... 0" ® (M%))

=1

< 10l 0po ((@)iz) | (Aaiza -
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Taking the supermum over all (\;);; C K such that ||(A\;);_, ]|, < 1, we obtain
1Tt a) @)l o < 10-bpo (i),

Since ¢ is arbitrary, the latter inequality together (2.1) imply that

1—0c

(ZHT@%,-'-J%H") <ol (i),
i=1

Showing that T' € £;7 (X1,..., X;m; Y*) and 1T z5e < [|¢]l . Conversely, take T' € L7 (X1, ey X V)
and define a linear functional ¢, on X1 ® ... ® X,,, ® Y by ¢, (u) = Y1 T(x;, ..., ") (y;), where u =
Stiri®.. @2y, withmeN, 2l € Xj,y, €Y, i=1,..,n,j =1,..,m. An application of Holder’s
inequality reveals that,

A

or@)] < RIT@h el w)
[Tk ) o il
< TN g dpo(()iz) 1(@i)iza -

Thus |¢7(u)| < [|T|z57 dpo(u). This shows that ¢, € (X1 ® ... ® X ® Y, dp)" with [|¢,[| < [T 30, and
the proof concludes. O
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